These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9316401)

  • 21. Ca(2+) in specification of vegetal cell fate in early sea urchin embryos.
    Yazaki I
    J Exp Biol; 2001 Mar; 204(Pt 5):823-34. PubMed ID: 11171406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell polarity emerges at first cleavage in sea urchin embryos.
    Alford LM; Ng MM; Burgess DR
    Dev Biol; 2009 Jun; 330(1):12-20. PubMed ID: 19298809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Altered expression of spatially regulated embryonic genes in the progeny of separated sea urchin blastomeres.
    Hurley DL; Angerer LM; Angerer RC
    Development; 1989 Jul; 106(3):567-79. PubMed ID: 2480880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-cell interactions and the role of micromeres in the control of the mitotic pattern in sea urchin embryos.
    Andreuccetti P; Filosa S; Monroy A; Parisi E
    Prog Clin Biol Res; 1982; 85 Pt B():21-9. PubMed ID: 7122568
    [No Abstract]   [Full Text] [Related]  

  • 25. Apoptosis in sea urchin embryos.
    Roccheri MC; Barbata G; Cardinale F; Tipa C; Bosco L; Oliva OA; Cascino D; Giudice G
    Biochem Biophys Res Commun; 1997 Nov; 240(2):359-66. PubMed ID: 9388482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbohydrate involvement in cellular interactions in sea urchin gastrulation.
    Khurrum M; Hernandez A; Eskalaei M; Badali O; Coyle-Thompson C; Oppenheimer SB
    Acta Histochem; 2004; 106(2):97-106. PubMed ID: 15147630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division.
    Summers RG; Musial CE; Cheng PC; Leith A; Marko M
    J Electron Microsc Tech; 1991 May; 18(1):24-30. PubMed ID: 2056349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo.
    Logan CY; McClay DR
    Development; 1997 Jun; 124(11):2213-23. PubMed ID: 9187147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental potential of small micromeres in sea urchin embryos.
    Kurihara H; Amemiya S
    Zoolog Sci; 2005 Aug; 22(8):845-52. PubMed ID: 16141697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos.
    Henry JJ; Amemiya S; Wray GA; Raff RA
    Dev Biol; 1989 Nov; 136(1):140-53. PubMed ID: 2806717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of excitability types in blastomeres of the cleavage-arrested but differentiated embryos of an ascidian.
    Hirano T; Takahashi K; Yamashita N
    J Physiol; 1984 Feb; 347():301-25. PubMed ID: 6323697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] disrupts microtubule organization, cell division, and early development of sea urchin embryos.
    Holy J
    J Toxicol Environ Health A; 1998 Jun; 54(4):319-33. PubMed ID: 9638902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical and cellular aspects of gastrulation in the sea urchin Lytechinus variegatus.
    Morrill JB; Doty SD
    Prog Clin Biol Res; 1986; 217A():97-100. PubMed ID: 3749166
    [No Abstract]   [Full Text] [Related]  

  • 34. [A "micromere model" of cellular interactions in sea urchin embryos].
    Shmukler IuB
    Biofizika; 2010; 55(3):451-9. PubMed ID: 20586324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developmental expression of cell-surface (glyco)proteins involved in gastrulation and spicule formation in sea urchin embryos.
    Grant SR; Farach MC; Decker GL; Woodward HD; Farach HA; Lennarz WJ
    Cold Spring Harb Symp Quant Biol; 1985; 50():91-8. PubMed ID: 3868512
    [No Abstract]   [Full Text] [Related]  

  • 36. Phorbol esters alter cell fate during development of sea urchin embryos.
    Livingston BT; Wilt FH
    J Cell Biol; 1992 Dec; 119(6):1641-8. PubMed ID: 1469053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Amemiya S; Sawaguchi M; Mitsunaga-Nakatsubo K; Yamaguchi M
    Dev Genes Evol; 2005 Sep; 215(9):450-59. PubMed ID: 16078091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fibronectin in the developing sea urchin embryo.
    Spiegel E; Burger M; Spiegel M
    J Cell Biol; 1980 Oct; 87(1):309-13. PubMed ID: 6998990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micromere formation and its evolutionary implications in the sea urchin.
    Emura N; Yajima M
    Curr Top Dev Biol; 2022; 146():211-238. PubMed ID: 35152984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions.
    Schroeder TE
    Dev Biol; 1987 Nov; 124(1):9-22. PubMed ID: 3311851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.