These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9316444)

  • 1. Fructose transport and GLUT-5 protein in human sarcolemmal vesicles.
    Kristiansen S; Darakhshan F; Richter EA; Hundal HS
    Am J Physiol; 1997 Sep; 273(3 Pt 1):E543-8. PubMed ID: 9316444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle.
    Kristiansen S; Hargreaves M; Richter EA
    Am J Physiol; 1996 Jan; 270(1 Pt 1):E197-201. PubMed ID: 8772493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progressive increase in glucose transport and GLUT-4 in human sarcolemmal vesicles during moderate exercise.
    Kristiansen S; Hargreaves M; Richter EA
    Am J Physiol; 1997 Mar; 272(3 Pt 1):E385-9. PubMed ID: 9124543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sarcolemmal glucose transport and GLUT-4 translocation during exercise are diminished by endurance training.
    Richter EA; Jensen P; Kiens B; Kristiansen S
    Am J Physiol; 1998 Jan; 274(1):E89-95. PubMed ID: 9458752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GLUT5 expression and fructose transport in human skeletal muscle.
    Hundal HS; Darakhshan F; Kristiansen S; Blakemore SJ; Richter EA
    Adv Exp Med Biol; 1998; 441():35-45. PubMed ID: 9781312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GLUT5 and fructose transport in human skeletal muscle.
    Darakhshan F; Kristiansen S; Richter E; Hundal HS
    Biochem Soc Trans; 1997 Aug; 25(3):473S. PubMed ID: 9388694
    [No Abstract]   [Full Text] [Related]  

  • 7. Biochemical and functional evidences for a GLUT-4 homologous protein in avian skeletal muscle.
    Thomas-Delloye V; Marmonier F; Duchamp C; Pichon-Georges B; Lachuer J; Barré H; Crouzoulon G
    Am J Physiol; 1999 Dec; 277(6):R1733-40. PubMed ID: 10600921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of acute and chronic exercise on skeletal muscle glucose transport in aged rats.
    Youngren JF; Barnard RJ
    J Appl Physiol (1985); 1995 May; 78(5):1750-6. PubMed ID: 7649909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent.
    Roberts CK; Barnard RJ; Scheck SH; Balon TW
    Am J Physiol; 1997 Jul; 273(1 Pt 1):E220-5. PubMed ID: 9252500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and functional characterization of the GLUT5 fructose transporter in rat skeletal muscle.
    Darakhshan F; Hajduch E; Kristiansen S; Richter EA; Hundal HS
    Biochem J; 1998 Dec; 336 ( Pt 2)(Pt 2):361-6. PubMed ID: 9820812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose transport and transporters in muscle giant vesicles: differential effects of insulin and contractions.
    Ploug T; Wojtaszewski J; Kristiansen S; Hespel P; Galbo H; Richter EA
    Am J Physiol; 1993 Feb; 264(2 Pt 1):E270-8. PubMed ID: 8447394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seven days of exercise increase GLUT-4 protein content in human skeletal muscle.
    Houmard JA; Hickey MS; Tyndall GL; Gavigan KE; Dohm GL
    J Appl Physiol (1985); 1995 Dec; 79(6):1936-8. PubMed ID: 8847256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-adrenergic receptors are not responsible for exercise stimulation of glucose transport.
    Sternlicht E; Barnard RJ; Grimditch GK
    J Appl Physiol (1985); 1989 May; 66(5):2419-22. PubMed ID: 2545659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise.
    Hansen PA; Nolte LA; Chen MM; Holloszy JO
    J Appl Physiol (1985); 1998 Oct; 85(4):1218-22. PubMed ID: 9760308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive effect of contractions and insulin on GLUT-4 translocation into the sarcolemma.
    Gao J; Ren J; Gulve EA; Holloszy JO
    J Appl Physiol (1985); 1994 Oct; 77(4):1597-601. PubMed ID: 7836174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of hexose transport mutants to examine the expression and properties of the rat myoblast GLUT 1 transport process.
    Lu Z; Xia L; Mesmer OT; Lo TC
    Biochim Biophys Acta; 1995 Mar; 1234(2):155-65. PubMed ID: 7696290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in insulin-stimulated glucose transport and GLUT-4 protein in rat skeletal muscle after training.
    Kawanaka K; Tabata I; Katsuta S; Higuchi M
    J Appl Physiol (1985); 1997 Dec; 83(6):2043-7. PubMed ID: 9390979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate transport activity in rat skeletal muscle sarcolemmal vesicles after acute exhaustive exercise.
    Dubouchaud H; Eydoux N; Granier P; Préfaut C; Mercier J
    J Appl Physiol (1985); 1999 Sep; 87(3):955-61. PubMed ID: 10484563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic characterization and radiation-target sizing of the glucose transporter in cardiac sarcolemmal vesicles.
    Dale WE; Tsai YS; Jung CY; Hale CC; Rovetto MJ; Kim HD
    Biochim Biophys Acta; 1988 Aug; 943(2):360-6. PubMed ID: 3401485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle.
    Terada S; Yokozeki T; Kawanaka K; Ogawa K; Higuchi M; Ezaki O; Tabata I
    J Appl Physiol (1985); 2001 Jun; 90(6):2019-24. PubMed ID: 11356760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.