These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Partial protection against genital reinfection by immunization of guinea-pigs with isolated outer-membrane proteins of the chlamydial agent of guinea-pig inclusion conjunctivitis. Batteiger BE; Rank RG; Bavoil PM; Soderberg LS J Gen Microbiol; 1993 Dec; 139(12):2965-72. PubMed ID: 7510322 [TBL] [Abstract][Full Text] [Related]
24. Immunization with the Chlamydia trachomatis major outer membrane protein, using the outer surface protein A of Borrelia burgdorferi as an adjuvant, can induce protection against a chlamydial genital challenge. Pal S; Luke CJ; Barbour AG; Peterson EM; de la Maza LM Vaccine; 2003 Mar; 21(13-14):1455-65. PubMed ID: 12615442 [TBL] [Abstract][Full Text] [Related]
25. Vaccination of mice with DNA plasmids coding for the Chlamydia trachomatis major outer membrane protein elicits an immune response but fails to protect against a genital challenge. Pal S; Barnhart KM; Wei Q; Abai AM; Peterson EM; de la Maza LM Vaccine; 1999 Feb; 17(5):459-65. PubMed ID: 10073724 [TBL] [Abstract][Full Text] [Related]
26. Monoclonal immunoglobulin A antibody to the major outer membrane protein of the Chlamydia trachomatis mouse pneumonitis biovar protects mice against a chlamydial genital challenge. Pal S; Theodor I; Peterson EM; de la Maza LM Vaccine; 1997 Apr; 15(5):575-82. PubMed ID: 9160528 [TBL] [Abstract][Full Text] [Related]
27. Protective efficacy of major outer membrane protein-specific immunoglobulin A (IgA) and IgG monoclonal antibodies in a murine model of Chlamydia trachomatis genital tract infection. Cotter TW; Meng Q; Shen ZL; Zhang YX; Su H; Caldwell HD Infect Immun; 1995 Dec; 63(12):4704-14. PubMed ID: 7591126 [TBL] [Abstract][Full Text] [Related]
28. Effect of immunoglobulin G isotype on the infectivity of Chlamydia trachomatis in a mouse model of intravaginal infection. Peterson EM; Cheng X; Motin VL; de la Maza LM Infect Immun; 1997 Jul; 65(7):2693-9. PubMed ID: 9199438 [TBL] [Abstract][Full Text] [Related]
29. Prevalence and persistence of Öhman H; Rantsi T; Joki-Korpela P; Tiitinen A; Surcel HM Sex Transm Infect; 2020 Jun; 96(4):277-282. PubMed ID: 31320394 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of urogenital Chlamydia trachomatis infections by cell culture and the polymerase chain reaction using a closed system. Ostergaard L; Traulsen J; Birkelund S; Christiansen G Eur J Clin Microbiol Infect Dis; 1991 Dec; 10(12):1057-61. PubMed ID: 1802697 [TBL] [Abstract][Full Text] [Related]
31. Recombinant expression of Chlamydia trachomatis major outer membrane protein in E. Coli outer membrane as a substrate for vaccine research. Wen Z; Boddicker MA; Kaufhold RM; Khandelwal P; Durr E; Qiu P; Lucas BJ; Nahas DD; Cook JC; Touch S; Skinner JM; Espeseth AS; Przysiecki CT; Zhang L BMC Microbiol; 2016 Jul; 16(1):165. PubMed ID: 27464881 [TBL] [Abstract][Full Text] [Related]
32. Chlamydia trachomatis serology: diagnostic value of outer membrane protein 2 compared with that of other antigens. Bas S; Muzzin P; Vischer TL J Clin Microbiol; 2001 Nov; 39(11):4082-5. PubMed ID: 11682533 [TBL] [Abstract][Full Text] [Related]
33. Immunization with the Chlamydia trachomatis major outer membrane protein, using adjuvants developed for human vaccines, can induce partial protection in a mouse model against a genital challenge. Pal S; Peterson EM; Rappuoli R; Ratti G; de la Maza LM Vaccine; 2006 Feb; 24(6):766-75. PubMed ID: 16199110 [TBL] [Abstract][Full Text] [Related]
34. Priming with Chlamydia trachomatis major outer membrane protein (MOMP) DNA followed by MOMP ISCOM boosting enhances protection and is associated with increased immunoglobulin A and Th1 cellular immune responses. Dong-Ji Z; Yang X; Shen C; Lu H; Murdin A; Brunham RC Infect Immun; 2000 Jun; 68(6):3074-8. PubMed ID: 10816446 [TBL] [Abstract][Full Text] [Related]
35. Obtaining an ELISA test based on a recombinant protein of Chlamydia trachomatis. de Haro-Cruz MJ; Guadarrama-Macedo SI; López-Hurtado M; Escobedo-Guerra MR; Guerra-Infante FM Int Microbiol; 2019 Dec; 22(4):471-478. PubMed ID: 30976995 [TBL] [Abstract][Full Text] [Related]
36. Protective efficacy of a parenterally administered MOMP-derived synthetic oligopeptide vaccine in a murine model of Chlamydia trachomatis genital tract infection: serum neutralizing IgG antibodies do not protect against chlamydial genital tract infection. Su H; Parnell M; Caldwell HD Vaccine; 1995 Aug; 13(11):1023-32. PubMed ID: 8525685 [TBL] [Abstract][Full Text] [Related]
37. Overexpression and surface localization of the Chlamydia trachomatis major outer membrane protein in Escherichia coli. Koehler JE; Birkelund S; Stephens RS Mol Microbiol; 1992 May; 6(9):1087-94. PubMed ID: 1588812 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of Abbott Testpack Chlamydia for detection of Chlamydia trachomatis in patients attending sexually transmitted diseases clinics. Reichart CA; Gaydos CA; Brady WE; Quinn TC; Hook EW Sex Transm Dis; 1990; 17(3):147-51. PubMed ID: 2247805 [TBL] [Abstract][Full Text] [Related]
39. Purification of Chlamydia trachomatis strains in mixed infection by monoclonal antibody neutralization. Lampe MF; Stamm WE J Clin Microbiol; 1994 Feb; 32(2):533-5. PubMed ID: 8150969 [TBL] [Abstract][Full Text] [Related]
40. Poliovirus hybrids expressing neutralization epitopes from variable domains I and IV of the major outer membrane protein of Chlamydia trachomatis elicit broadly cross-reactive C. trachomatis-neutralizing antibodies. Murdin AD; Su H; Klein MH; Caldwell HD Infect Immun; 1995 Mar; 63(3):1116-21. PubMed ID: 7532625 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]