These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Effects of culture conditions on the in vitro infection of fibroblasts by Candida albicans. Merkel GJ Can J Microbiol; 1992 Feb; 38(2):135-42. PubMed ID: 1521187 [TBL] [Abstract][Full Text] [Related]
6. Protein synthesis and amino acid pool during yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans. Torosantucci A; Angiolella L; Filesi C; Cassone A J Gen Microbiol; 1984 Dec; 130(12):3285-93. PubMed ID: 6394717 [TBL] [Abstract][Full Text] [Related]
7. The requirements for bicarbonate and metabolism of the inducer during germ tube formation by Candida albicans. Pollack JH; Hashimoto T Can J Microbiol; 1988 Nov; 34(11):1183-8. PubMed ID: 2850098 [TBL] [Abstract][Full Text] [Related]
8. Induction of mycelial type of development in Candida albicans by the antibiotic monorden and N-acetyl-D-glucosamine. Hrmová M; Drobnica L Mycopathologia; 1982 Jul; 79(1):55-64. PubMed ID: 6750407 [TBL] [Abstract][Full Text] [Related]
10. Reassessment of the effect of glucagon and nucleotides on Candida albicans germ tube formation. Zelada A; Castilla R; Passeron S; Cantore ML Cell Mol Biol (Noisy-le-grand); 1996 Jun; 42(4):567-76. PubMed ID: 8828912 [TBL] [Abstract][Full Text] [Related]
11. Induction of N-acetyl-D-glucosamine catabolic enzymes and germinative response in Candida albicans. Natarajan K; Rai YP; Datta A Biochem Int; 1984 Dec; 9(6):735-44. PubMed ID: 6395867 [TBL] [Abstract][Full Text] [Related]
12. N-acetyl-D-glucosamine induces germination in Candida albicans through a mechanism sensitive to inhibitors of cAMP-dependent protein kinase. Castilla R; Passeron S; Cantore ML Cell Signal; 1998 Nov; 10(10):713-9. PubMed ID: 9884022 [TBL] [Abstract][Full Text] [Related]
14. Induction and morphogenesis of chlamydospores in an agerminative variant of Candida albicans. Torosantucci A; Cassone A Sabouraudia; 1983 Mar; 21(1):49-57. PubMed ID: 6342175 [TBL] [Abstract][Full Text] [Related]
15. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Sullivan PA; Yin CY; Molloy C; Templeton MD; Shepherd MG Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947 [TBL] [Abstract][Full Text] [Related]
16. Starvation and germ tube formation in the exponential phase Candida albicans. Cho T; Hamatake H; Kaminishi H; Kuroki A; Suehara T; Suehara Y; Sakima T; Hagihara Y; Watanabe K Fukuoka Shika Daigaku Gakkai Zasshi; 1989; 16(4):510-21. PubMed ID: 2562099 [TBL] [Abstract][Full Text] [Related]
17. The role of glucose in the pH regulation of germ-tube formation in Candida albicans. Pollack JH; Hashimoto T J Gen Microbiol; 1987 Feb; 133(2):415-24. PubMed ID: 3309155 [TBL] [Abstract][Full Text] [Related]
18. Effects of hemin, CO Jakab Á; Antal K; Emri T; Boczonádi I; Imre A; Gebri E; Majoros L; Pfliegler WP; Szarka M; Balla G; Balla J; Pócsi I Acta Microbiol Immunol Hung; 2016 Dec; 63(4):387-403. PubMed ID: 27936861 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of the actin gene is associated with the morphogenesis of Candida albicans. Paranjape V; Datta A Biochem Biophys Res Commun; 1991 Aug; 179(1):423-7. PubMed ID: 1883368 [TBL] [Abstract][Full Text] [Related]
20. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans. Gopal P; Sullivan PA; Shepherd MG J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]