These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9317296)

  • 1. Motor pattern of the stinging response in the honeybee Apis mellifera.
    Ogawa H; Kawakami Z; Yamaguchi T
    J Exp Biol; 1995; 198(Pt 1):39-47. PubMed ID: 9317296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proprioceptors involved in stinging response of the honeybee, Apis mellifera.
    Ogawa H; Kawakami Z; Yamaguchi T
    J Insect Physiol; 2011 Oct; 57(10):1358-67. PubMed ID: 21767542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fictive swimming elicited by electrical stimulation of the midbrain in goldfish.
    Fetcho JR; Svoboda KR
    J Neurophysiol; 1993 Aug; 70(2):765-80. PubMed ID: 8410171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A separate local pattern-generating circuit controls the movements of each swimmeret in crayfish.
    Murchison D; Chrachri A; Mulloney B
    J Neurophysiol; 1993 Dec; 70(6):2620-31. PubMed ID: 8120602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological basis of feeding behavior in Tritonia diomedea. II. Neuronal mechanisms.
    Willows AO
    J Neurophysiol; 1980 Nov; 44(5):849-61. PubMed ID: 6255109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine.
    BÜSchges A; Schmitz J; BÄSsler U
    J Exp Biol; 1995; 198(Pt 2):435-56. PubMed ID: 9318078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of extrinsic feeding muscles in Aplysia.
    Jahan-Parwar B; Fredman SM
    J Neurophysiol; 1983 Jun; 49(6):1481-503. PubMed ID: 6875634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of jaw and extrinsic tongue muscle activity during rhythmic jaw movements in anesthetized rabbits.
    Ariyasinghe S; Inoue M; Yamamura K; Harasawa Y; Kurose M; Yamada Y
    Brain Res; 2004 Aug; 1016(2):201-16. PubMed ID: 15246856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a radula opener neuromuscular system in Aplysia.
    Evans CG; Rosen S; Kupfermann I; Weiss KR; Cropper EC
    J Neurophysiol; 1996 Aug; 76(2):1267-81. PubMed ID: 8871235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilocarpine-induced motor rhythms in the isolated locust suboesophageal ganglion.
    Rast G; BrÄUnig P
    J Exp Biol; 1997; 200(Pt 16):2197-207. PubMed ID: 9320107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system.
    Elson RC; Sillar KT; Bush BM
    J Neurophysiol; 1992 Mar; 67(3):530-46. PubMed ID: 1578243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phasic bursts of the antagonistic jaw muscles during REM sleep mimic a coordinated motor pattern during mastication.
    Kato T; Nakamura N; Masuda Y; Yoshida A; Morimoto T; Yamamura K; Yamashita S; Sato F
    J Appl Physiol (1985); 2013 Feb; 114(3):316-28. PubMed ID: 23195628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-methyl-D-aspartate antagonist.
    Currie SN; Lee S
    J Neurophysiol; 1996 Jul; 76(1):81-92. PubMed ID: 8836211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine.
    Ryckebusch S; Laurent G
    J Neurophysiol; 1993 May; 69(5):1583-95. PubMed ID: 8389831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between segmental leg central pattern generators during fictive rhythms in the locust.
    Ryckebusch S; Laurent G
    J Neurophysiol; 1994 Dec; 72(6):2771-85. PubMed ID: 7897488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral influences on the central pattern-rhythm generator for tongue movements in the rat.
    Jüch PJ; Van Willigen JD; Broekhuijsen ML; Ballintijn CM
    Arch Oral Biol; 1985; 30(5):415-21. PubMed ID: 3861147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of motor pattern frequency by reversals in proprioceptive feedback.
    Smarandache CR; Daur N; Hedrich UB; Stein W
    Eur J Neurosci; 2008 Aug; 28(3):460-74. PubMed ID: 18702718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defense reaction in the pond snail Planorbis corneus. II. Central pattern generator.
    Arshavsky YI; Deliagina TG; Okshtein IL; Orlovsky GN; Panchin YV; Popova LB
    J Neurophysiol; 1994 Mar; 71(3):891-7. PubMed ID: 8201429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crawling motor patterns induced by pilocarpine in isolated larval nerve cords of Manduca sexta.
    Johnston RM; Levine RB
    J Neurophysiol; 1996 Nov; 76(5):3178-95. PubMed ID: 8930265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.