BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9317577)

  • 1. Extracellular carbonic anhydrase and an acid-base disequilibrium in the blood of the dogfish Squalus acanthias.
    Gilmour K; Henry R; Wood C; Perry S
    J Exp Biol; 1997; 200(Pt 1):173-83. PubMed ID: 9317577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does gill boundary layer carbonic anhydrase contribute to carbon dioxide excretion: a comparison between dogfish (Squalus acanthias) and rainbow trout (Oncorhynchus mykiss).
    Perry SF; Gilmour KM; Bernier NJ; Wood CM
    J Exp Biol; 1999 Mar; 202(Pt 6):749-56. PubMed ID: 10021328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular carbonic anhydrase in the dogfish, Squalus acanthias: a role in CO2 excretion.
    Gilmour KM; Perry SF; Bernier NJ; Henry RP; Wood CM
    Physiol Biochem Zool; 2001; 74(4):477-92. PubMed ID: 11436132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid-base disequilibrium in the arterial blood of rainbow trout.
    Gilmour KM; Randall DJ; Perry SF
    Respir Physiol; 1994 May; 96(2-3):259-72. PubMed ID: 8059088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of softwater acclimation on respiratory gas transfer in the rainbow trout Oncorhynchus mykiss.
    Gilmour A; Fenwick J; Perry S
    J Exp Biol; 1995; 198(Pt 12):2557-67. PubMed ID: 9320486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. THE EFFECTS OF HYPOXIA, HYPEROXIA OR HYPERCAPNIA ON THE ACID-BASE DISEQUILIBRIUM IN THE ARTERIAL BLOOD OF RAINBOW TROUT.
    Gilmour K; Perry S
    J Exp Biol; 1994 Jul; 192(1):269-84. PubMed ID: 9317784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of exogenous extracellular carbonic anhydrase on CO2 excretion in rainbow trout (Oncorhynchus mykiss): role of plasma buffering capacity.
    Desforges PR; Gilmour KM; Perry SF
    J Comp Physiol B; 2001 Aug; 171(6):465-73. PubMed ID: 11585258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of gill and red cell carbonic anhydrase in elasmobranch HCO3- and CO2 excretion.
    Swenson ER; Maren TH
    Am J Physiol; 1987 Sep; 253(3 Pt 2):R450-8. PubMed ID: 3115121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of endothelin-1 on the cardiorespiratory physiology of the freshwater trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias).
    Perry SF; Montpetit CJ; McKendry J; Desforges PR; Gilmour KM; Wood CM; Olson KR
    J Comp Physiol B; 2001 Nov; 171(8):623-34. PubMed ID: 11765971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood and Gill Carbonic Anhydrase in the Context of a Chondrichthyan Model of CO
    McMillan OJL; Dichiera AM; Harter TS; Wilson JM; Esbaugh AJ; Brauner CJ
    Physiol Biochem Zool; 2019; 92(6):554-566. PubMed ID: 31567050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branchial membrane-associated carbonic anhydrase activity maintains CO2 excretion in severely anemic dogfish.
    Gilmour KM; Perry SF
    Am J Physiol Regul Integr Comp Physiol; 2004 Jun; 286(6):R1138-48. PubMed ID: 14988082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type IV carbonic anhydrase is present in the gills of spiny dogfish (Squalus acanthias).
    Gilmour KM; Bayaa M; Kenney L; McNeill B; Perry SF
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R556-67. PubMed ID: 16973930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of catecholamine release on ventilation and blood oxygen transport during hypoxia and hypercapnia in an elasmobranch Squalus acanthias and a teleost Oncorhynchus mykiss.
    Perry S; Gilmour K
    J Exp Biol; 1996; 199(Pt 9):2105-18. PubMed ID: 9320017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical analysis of carbonic anhydrase function, respiratory gas exchange, and the acid-base control of secretion in the rectal gland of Squalus acanthias.
    Shuttleworth TJ; Thompson J; Munger RS; Wood CM
    J Exp Biol; 2006 Dec; 209(Pt 23):4701-16. PubMed ID: 17114403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Buffering limits plasma HCO3- dehydration when red blood cell anion exchange is inhibited.
    Gilmour KM; Desforges PR; Perry SF
    Respir Physiol Neurobiol; 2004 May; 140(2):173-87. PubMed ID: 15134665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-regulatory mechanisms in in vitro perfused rectal gland tubules of Squalus acanthias.
    Bleich M; Warth R; Thiele I; Greger R
    Pflugers Arch; 1998 Jul; 436(2):248-54. PubMed ID: 9594025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intestinal base excretion in the seawater-adapted rainbow trout: a role in acid-base balance?
    Wilson R; Gilmour K; Henry R; Wood C
    J Exp Biol; 1996; 199(Pt 10):2331-43. PubMed ID: 9320250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of acidosis and carbonic anhydrase inhibition in the elasmobranch rectal gland.
    Swenson ER; Maren TH
    Am J Physiol; 1984 Jul; 247(1 Pt 2):F86-92. PubMed ID: 6430106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular carbonic anhydrase contributes to the red blood cell adrenergic response in rainbow trout Oncorhynchus mykiss.
    Carrie DW; Gilmour KM
    Respir Physiol Neurobiol; 2012 Oct; 184(1):60-4. PubMed ID: 22877583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HCO3- dehydration by the blood of an elasmobranch in the absence of a Haldane effect.
    Wood CM; Perry SF; Walsh PJ; Thomas S
    Respir Physiol; 1994; 98(3):319-37. PubMed ID: 7899732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.