These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9318238)

  • 1. Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces.
    Wakeling J; Ellington C
    J Exp Biol; 1997 Feb; 200(Pt 3):543-556. PubMed ID: 9318238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dragonfly flight. III. Lift and power requirements.
    Wakeling J; Ellington C
    J Exp Biol; 1997 Feb; 200(Pt 3):583-600. PubMed ID: 9318294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight.
    Wakeling J; Ellington C
    J Exp Biol; 1997 Feb; 200(Pt 3):557-582. PubMed ID: 9318255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flight of the honeybee. V. Drag and lift coefficients of the bee's body; implications for flight dynamics.
    Nachtigall W; Hanauer-Thieser U
    J Comp Physiol B; 1992; 162(3):267-77. PubMed ID: 1613166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamic characteristics of flying fish in gliding flight.
    Park H; Choi H
    J Exp Biol; 2010 Oct; 213(Pt 19):3269-79. PubMed ID: 20833919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between 3-D kinematics and gliding performance in the southern flying squirrel, Glaucomys volans.
    Bishop KL
    J Exp Biol; 2006 Feb; 209(Pt 4):689-701. PubMed ID: 16449563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance.
    Holden D; Socha JJ; Cardwell ND; Vlachos PP
    J Exp Biol; 2014 Feb; 217(Pt 3):382-94. PubMed ID: 24477611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on the aerodynamic characteristics of dragonfly leading edge.
    Hu Y; Zhu C; Liu Q; Zhu D; Xue J; Li Q; Zhou X
    Microsc Res Tech; 2024 Sep; ():. PubMed ID: 39257069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of models to estimate flight performance of gliding birds from wakes.
    Song J; Chen C; Cheney JA; Usherwood JR; Bomphrey RJ
    Phys Fluids (1994); 2024 Sep; 36(9):091912. PubMed ID: 39319010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
    Levy DE; Seifert A
    J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of drag in insect hovering.
    Wang ZJ
    J Exp Biol; 2004 Nov; 207(Pt 23):4147-55. PubMed ID: 15498960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspiration of the vein structure of dragonfly wings on its flight characteristics.
    Liu C; Du R; Li F; Sun J
    Microsc Res Tech; 2022 Mar; 85(3):829-839. PubMed ID: 34581475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces.
    Lees JJ; Dimitriadis G; Nudds RL
    PeerJ; 2016; 4():e2495. PubMed ID: 27781155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gliding flight: speed and acceleration of ideal falcons during diving and pull out.
    Tucker VA
    J Exp Biol; 1998 Jan; 201(Pt 3):403-14. PubMed ID: 9427673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of flight force by a flapping wing: lift and drag production.
    Sane SP; Dickinson MH
    J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High aerodynamic lift from the tail reduces drag in gliding raptors.
    Usherwood JR; Cheney JA; Song J; Windsor SP; Stevenson JPJ; Dierksheide U; Nila A; Bomphrey RJ
    J Exp Biol; 2020 Feb; 223(Pt 3):. PubMed ID: 32041775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders (Petaurus breviceps).
    Bishop KL
    J Exp Biol; 2007 Aug; 210(Pt 15):2593-606. PubMed ID: 17644674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils.
    Kesel AB
    J Exp Biol; 2000 Oct; 203(Pt 20):3125-35. PubMed ID: 11003823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-steady aerodynamic theory under-predicts glide performance in flying snakes.
    Yeaton IJ; Ross SD; Socha JJ
    J Exp Biol; 2024 Oct; 227(19):. PubMed ID: 39246146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.