These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 9318238)
21. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight. Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D Elife; 2021 Mar; 10():. PubMed ID: 33724182 [TBL] [Abstract][Full Text] [Related]
22. Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight. Zhang J; Lu XY Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):017302. PubMed ID: 19658843 [TBL] [Abstract][Full Text] [Related]
23. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. Wang JK; Sun M J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955 [TBL] [Abstract][Full Text] [Related]
24. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient. Tucker VA J Exp Biol; 2000 Dec; 203(Pt 24):3733-44. PubMed ID: 11076737 [TBL] [Abstract][Full Text] [Related]
25. Efficiency of lift production in flapping and gliding flight of swifts. Henningsson P; Hedenström A; Bomphrey RJ PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260 [TBL] [Abstract][Full Text] [Related]
26. Simulation Analysis of the Aerodynamic Performance of a Bionic Aircraft with Foldable Beetle Wings in Gliding Flight. Wang C; Ning Y; Wang X; Zhang J; Wang L Appl Bionics Biomech; 2020; 2020():8843360. PubMed ID: 33425005 [TBL] [Abstract][Full Text] [Related]
27. Aerodynamic effects of corrugation in flapping insect wings in hovering flight. Meng XG; Xu L; Sun M J Exp Biol; 2011 Feb; 214(Pt 3):432-44. PubMed ID: 21228202 [TBL] [Abstract][Full Text] [Related]
28. Effects of corrugation of the dragonfly wing on gliding performance. Kim WK; Ko JH; Park HC; Byun D J Theor Biol; 2009 Oct; 260(4):523-30. PubMed ID: 19631665 [TBL] [Abstract][Full Text] [Related]
29. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight. Nabawy MR; Crowthe WJ PLoS One; 2015; 10(8):e0134972. PubMed ID: 26252657 [TBL] [Abstract][Full Text] [Related]
30. The aerodynamic forces and pressure distribution of a revolving pigeon wing. Usherwood JR Exp Fluids; 2009 May; 46(5):991-1003. PubMed ID: 22736891 [TBL] [Abstract][Full Text] [Related]
31. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651 [TBL] [Abstract][Full Text] [Related]
32. The effect of advance ratio on the aerodynamics of revolving wings. Dickson WB; Dickinson MH J Exp Biol; 2004 Nov; 207(Pt 24):4269-81. PubMed ID: 15531648 [TBL] [Abstract][Full Text] [Related]
33. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. Sun M; Wu JH J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674 [TBL] [Abstract][Full Text] [Related]
34. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula). KleinHeerenbrink M; Warfvinge K; Hedenström A J Exp Biol; 2016 May; 219(Pt 10):1572-81. PubMed ID: 26994178 [TBL] [Abstract][Full Text] [Related]
35. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency. Thielicke W; Stamhuis EJ Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756 [TBL] [Abstract][Full Text] [Related]
36. Functional Morphology of Gliding Flight II. Morphology Follows Predictions of Gliding Performance. Rader JA; Hedrick TL; He Y; Waldrop LD Integr Comp Biol; 2020 Nov; 60(5):1297-1308. PubMed ID: 33184652 [TBL] [Abstract][Full Text] [Related]
37. Flow over a ski jumper in flight: Prediction of the aerodynamic force and flight posture with higher lift-to-drag ratio. Kim W; Lee H; Lee J; Jung D; Choi H J Biomech; 2019 May; 89():78-84. PubMed ID: 31043228 [TBL] [Abstract][Full Text] [Related]
38. Aerodynamic effects of flexibility in flapping wings. Zhao L; Huang Q; Deng X; Sane SP J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394 [TBL] [Abstract][Full Text] [Related]
39. Flexible clap and fling in tiny insect flight. Miller LA; Peskin CS J Exp Biol; 2009 Oct; 212(19):3076-90. PubMed ID: 19749100 [TBL] [Abstract][Full Text] [Related]
40. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. Sun M; Lan SL J Exp Biol; 2004 May; 207(Pt 11):1887-901. PubMed ID: 15107443 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]