These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9318360)

  • 21. Sodium and calcium share the electrogenic 2 Na(+)-1 H+ antiporter in crustacean antennal glands.
    Ahearn GA; Franco P
    Am J Physiol; 1990 Nov; 259(5 Pt 2):F758-67. PubMed ID: 2173419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alterations in pH gradient and membrane potential.
    Daniel H; Morse EL; Adibi SA
    J Biol Chem; 1991 Oct; 266(30):19917-24. PubMed ID: 1939055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose transport by lobster hepatopancreatic brush-border membrane vesicles.
    Ahearn GA; Grover ML; Dunn RE
    Am J Physiol; 1985 Feb; 248(2 Pt 2):R133-41. PubMed ID: 3970230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Na(+)-D-glucose cotransport by intestinal BBMVs of the Antarctic fish Trematomus bernacchii.
    Maffia M; Acierno R; Cillo E; Storelli C
    Am J Physiol; 1996 Dec; 271(6 Pt 2):R1576-83. PubMed ID: 8997355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ca2+ transport pathways in brush-border membrane vesicles of crustacean antennal glands.
    Ahearn GA; Franco P
    Am J Physiol; 1993 Jun; 264(6 Pt 2):R1206-13. PubMed ID: 8322975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic analysis of electrogenic 2 Na+-1 H+ antiport in crustacean hepatopancreas.
    Ahearn GA; Clay LP
    Am J Physiol; 1989 Sep; 257(3 Pt 2):R484-93. PubMed ID: 2551193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative cation dependency of sugar transport by crustacean hepatopancreas and intestine.
    Duka A; Ahearn GA
    Biol Open; 2014 Jun; 3(7):635-43. PubMed ID: 24950971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proton-cotransport of pravastatin across intestinal brush-border membrane.
    Tamai I; Takanaga H; Maeda H; Ogihara T; Yoneda M; Tsuji A
    Pharm Res; 1995 Nov; 12(11):1727-32. PubMed ID: 8592677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 65Zn2+ Transport by lobster hepatopancreatic lysosomal membrane vesicles.
    Mandal PK; Mandal A; Ahearn GA
    J Exp Zool A Comp Exp Biol; 2006 Mar; 305(3):203-14. PubMed ID: 16432883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ascorbic acid transport by intestinal brush-border membrane vesicles of the teleost Anguilla anguilla.
    Maffia M; Ahearn GA; Vilella S; Zonno V; Storelli C
    Am J Physiol; 1993 Jun; 264(6 Pt 2):R1248-53. PubMed ID: 8322981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterisation of the H(+)/peptide cotransporter of eel intestinal brush-border membranes.
    Verri T; Maffia M; Danieli A; Herget M; Wenzel U; Daniel H; Storelli C
    J Exp Biol; 2000 Oct; 203(Pt 19):2991-3001. PubMed ID: 10976035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport.
    Simanjuntak MT; Tamai I; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Na-dependent D-glucose and L-alanine transport in eel intestinal brush border membrane vesicles.
    Storelli C; Vilella S; Cassano G
    Am J Physiol; 1986 Sep; 251(3 Pt 2):R463-9. PubMed ID: 3752280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of phosphate uptake into brush-border membrane vesicles from goat jejunum.
    Schröder B; Breves G
    J Comp Physiol B; 1996; 166(3):230-40. PubMed ID: 8765667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional characterization of a novel disaccharide transporter in lobster hepatopancreas.
    Scheffler O; Ahearn GA
    J Comp Physiol B; 2017 May; 187(4):563-573. PubMed ID: 28180997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport of glycyl-L-proline in intestinal brush-border membrane vesicles of the suckling rat: characteristics and maturation.
    Said HM; Ghishan FK; Redha R
    Biochim Biophys Acta; 1988 Jun; 941(2):232-40. PubMed ID: 3382647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Both Na+ and Cl- gradients energize NaCl/L-glutamate cotransport in lobster hepatopancreatic brush border membrane vesicles.
    Balon LM; Ahearn GA
    Biochim Biophys Acta; 1991 Aug; 1067(2):123-30. PubMed ID: 1678969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. K⁺-dependent ³H-D-glucose transport by hepatopancreatic brush border membrane vesicles of a marine shrimp.
    Obi IE; Sterling KM; Ahearn GA
    J Comp Physiol B; 2013 Jan; 183(1):61-9. PubMed ID: 22752676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional characterization of brain peptide transporter in rat cerebral cortex: identification of the high-affinity type H+/peptide transporter PEPT2.
    Fujita T; Kishida T; Wada M; Okada N; Yamamoto A; Leibach FH; Ganapathy V
    Brain Res; 2004 Jan; 997(1):52-61. PubMed ID: 14715149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport of amino acids in renal brush border membrane vesicles. Uptake of L-proline.
    Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):591-5. PubMed ID: 833146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.