These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9318704)

  • 21. Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight.
    Heerenbrink MK; Johansson LC; Hedenström A
    Proc Math Phys Eng Sci; 2015 May; 471(2177):20140952. PubMed ID: 27547098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coordination-related changes in the rhythms of breathing and walking in humans.
    Rassler B; Kohl J
    Eur J Appl Physiol; 2000 Jul; 82(4):280-8. PubMed ID: 10958370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Birds invest wingbeats to keep a steady head and reap the ultimate benefits of flying together.
    Taylor LA; Taylor GK; Lambert B; Walker JA; Biro D; Portugal SJ
    PLoS Biol; 2019 Jun; 17(6):e3000299. PubMed ID: 31211769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hovering and intermittent flight in birds.
    Tobalske BW
    Bioinspir Biomim; 2010 Dec; 5(4):045004. PubMed ID: 21098953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How birds direct impulse to minimize the energetic cost of foraging flight.
    Chin DD; Lentink D
    Sci Adv; 2017 May; 3(5):e1603041. PubMed ID: 28560342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wingbeat time and the scaling of passive rotational damping in flapping flight.
    Hedrick TL; Cheng B; Deng X
    Science; 2009 Apr; 324(5924):252-5. PubMed ID: 19359586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.
    Nudds RL; Taylor GK; Thomas AL
    Proc Biol Sci; 2004 Oct; 271(1552):2071-6. PubMed ID: 15451698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phylogenetic and kinematic constraints on avian flight signals.
    Berg KS; Delgado S; Mata-Betancourt A
    Proc Biol Sci; 2019 Sep; 286(1911):20191083. PubMed ID: 31530147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flight style of the black-billed magpie: variation in wing kinematics, neuromuscular control, and muscle composition.
    Tobalske BW; Olson NE; Dial KP
    J Exp Zool; 1997 Nov; 279(4):313-29. PubMed ID: 9360313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle of attack.
    Tomotani BM; Muijres FT
    J Exp Biol; 2019 May; 222(Pt 10):. PubMed ID: 31085600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Into turbulent air: size-dependent effects of von Kármán vortex streets on hummingbird flight kinematics and energetics.
    Ortega-Jimenez VM; Sapir N; Wolf M; Variano EA; Dudley R
    Proc Biol Sci; 2014 May; 281(1783):20140180. PubMed ID: 24671978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wingbeat frequency of barn swallows and house martins: a comparison between free flight and wind tunnel experiments.
    Liechti F; Bruderer L
    J Exp Biol; 2002 Aug; 205(Pt 16):2461-7. PubMed ID: 12124369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of locomotor-respiratory coupling on the pattern of breathing in horses.
    Lafortuna CL; Reinach E; Saibene F
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):587-96. PubMed ID: 9019552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient.
    Groom DJ; Toledo MC; Welch KC
    J Comp Physiol B; 2017 Jan; 187(1):165-182. PubMed ID: 27431590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical ventilatory modes and cardioventilatory phase synchronization in acute respiratory failure patients.
    Mazzucco CE; Marchi A; Bari V; De Maria B; Guzzetti S; Raimondi F; Catena E; Ottolina D; Amadio C; Cravero S; Fossali T; Colombo R; Porta A
    Physiol Meas; 2017 May; 38(5):895-911. PubMed ID: 28052047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematics of hovering hummingbird flight along simulated and natural elevational gradients.
    Altshuler DL; Dudley R
    J Exp Biol; 2003 Sep; 206(Pt 18):3139-47. PubMed ID: 12909695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immediate changes in ventilation and respiratory pattern associated with onset and cessation of locomotion in the cat.
    DiMarco AF; Romaniuk JR; Von Euler C; Yamamoto Y
    J Physiol; 1983 Oct; 343():1-16. PubMed ID: 6644612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinematic control of male Allen's hummingbird wing trill over a range of flight speeds.
    Clark CJ; Mistick EA
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 29776995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.