These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9318726)

  • 1. Relative effects of carbonic anhydrase infusion or inhibition on carbon dioxide transport and acid-base status in the sea lamprey Petromyzon marinus following exercise.
    Tufts B; Currie S; Kieffer J
    J Exp Biol; 1996; 199(Pt 4):933-40. PubMed ID: 9318726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-base regulation and blood gas transport following exhaustive exercise in an agnathan, the sea lamprey Petromyzon marinus.
    Tufts BL
    J Exp Biol; 1991 Sep; 159():371-85. PubMed ID: 1940770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bicarbonate permeability and immunological evidence for an anion exchanger-like protein in the red blood cells of the sea lamprey, Petromyzon marinus.
    Cameron BA; Perry SF; Wu C; Ko K; Tufts BL
    J Comp Physiol B; 1996; 166(3):197-204. PubMed ID: 8765665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of carbonic anhydrase inhibition on the acid base status in lamprey and trout.
    Henry RP; Boutilier RG; Tufts BL
    Respir Physiol; 1995 Feb; 99(2):241-8. PubMed ID: 7777707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of blood CO2 reaction rates on CO2 removal from muscle in exercised trout.
    Currie S; Kieffer JD; Tufts BL
    Respir Physiol; 1995 Jun; 100(3):261-9. PubMed ID: 7481116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a membrane-bound carbonic anhydrase in the heart of an ancient vertebrate, the sea lamprey (Petromyzon marinus).
    Esbaugh AJ; Tufts BL
    J Comp Physiol B; 2004 Jul; 174(5):399-406. PubMed ID: 15088117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of acid-base regulation in migrant sea lampreys (Petromyzon marinus) following exhaustive exercise.
    Wilkie M; Couturier J; Tufts B
    J Exp Biol; 1998 May; 201 (Pt 9)():1473-82. PubMed ID: 9547326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tribute to R. G. Boutilier: evidence of a high activity carbonic anhydrase isozyme in the red blood cells of an ancient vertebrate, the sea lamprey Petromyzon marinus.
    Esbaugh AJ; Tufts BL
    J Exp Biol; 2006 Apr; 209(Pt 7):1169-78. PubMed ID: 16547289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does gill boundary layer carbonic anhydrase contribute to carbon dioxide excretion: a comparison between dogfish (Squalus acanthias) and rainbow trout (Oncorhynchus mykiss).
    Perry SF; Gilmour KM; Bernier NJ; Wood CM
    J Exp Biol; 1999 Mar; 202(Pt 6):749-56. PubMed ID: 10021328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of exogenous extracellular carbonic anhydrase on CO2 excretion in rainbow trout (Oncorhynchus mykiss): role of plasma buffering capacity.
    Desforges PR; Gilmour KM; Perry SF
    J Comp Physiol B; 2001 Aug; 171(6):465-73. PubMed ID: 11585258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of carbonic anhydrase inhibition on ventilation-perfusion matching in the dog lung.
    Swenson ER; Robertson HT; Hlastala MP
    J Clin Invest; 1993 Aug; 92(2):702-9. PubMed ID: 8349809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IN VITRO INVESTIGATION OF THE FACTORS CONTRIBUTING TO THE UNIQUE CO2 TRANSPORT PROPERTIES OF BLOOD IN THE SEA LAMPREY (PETROMYZON MARINUS).
    Cameron B; Tufts B
    J Exp Biol; 1994 Dec; 197(1):337-48. PubMed ID: 9317916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO2 transport in agnathan blood: evidence of erythrocyte Cl-/HCO3- exchange limitations.
    Tufts BL; Boutilier RG
    Respir Physiol; 1990; 80(2-3):335-47. PubMed ID: 2120756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes in acid-base equilibrium and CO2 output induced by bicarbonate infusion].
    Cavaliere F; Pennisi MA; La Mura F; Proietti R
    Minerva Anestesiol; 2000 Sep; 66(9):627-33. PubMed ID: 11070962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of CO2 excretion and intravascular pH disequilibria during carbonic anhydrase inhibition.
    Cardenas V; Heming TA; Bidani A
    J Appl Physiol (1985); 1998 Feb; 84(2):683-94. PubMed ID: 9475881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic urea synthesis and pH regulation. Role of CO2, HCO3-, pH and the activity of carbonic anhydrase.
    Häussinger D; Gerok W
    Eur J Biochem; 1985 Oct; 152(2):381-6. PubMed ID: 3932068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chronic acetazolamide administration on gas exchange and acid-base control in pulmonary circulation in exercising horses.
    Vengust M; Stämpfli H; De Moraes AN; Teixeiro-Neto F; Viel L; Heigenhauser G
    Equine Vet J Suppl; 2010 Nov; (38):40-50. PubMed ID: 21058981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analysis of carbon dioxide transport in arterial and venous blood of the rainbow trout, Oncorhynchus mykiss, following exhaustive exercise.
    Currie S; Tufts BL
    Fish Physiol Biochem; 1993 Oct; 12(3):183-92. PubMed ID: 24202776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid metabolic recovery following vigorous exercise in burrow-dwelling larval sea lampreys (Petromyzon marinus).
    Wilkie MP; Bradshaw PG; Joanis V; Claude JF; Swindell SL
    Physiol Biochem Zool; 2001; 74(2):261-72. PubMed ID: 11247745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonic anhydrase facilitates CO2 and NH3 transport across the sarcolemma of trout white muscle.
    Henry RP; Wang Y; Wood CM
    Am J Physiol; 1997 Jun; 272(6 Pt 2):R1754-61. PubMed ID: 9227587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.