These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9319276)

  • 1. Thermal avoidance during flight in the locust Locusta migratoria.
    Robertson R; Kuhnert C; Dawson J
    J Exp Biol; 1996; 199(Pt 6):1383-93. PubMed ID: 9319276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forewing asymmetries during auditory avoidance in flying locusts.
    Dawson J; Dawson-Scully K; Robert D; RobertsonÝ R
    J Exp Biol; 1997; 200(Pt 17):2323-35. PubMed ID: 9320244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects.
    McMillan GA; Loessin V; Gray JR
    J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum metabolic rate, relative lift, wingbeat frequency and stroke amplitude during tethered flight in the adult locust Locusta migratoria.
    Snelling EP; Seymour RS; Matthews PG; White CR
    J Exp Biol; 2012 Sep; 215(Pt 18):3317-23. PubMed ID: 22735344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic and aerodynamic aspects of ultrasound-induced negative phonotaxis inflying Australian field crickets (Teleogryllus oceanicus).
    May ML; Brodfuehrer PD; Hoy RR
    J Comp Physiol A; 1988 Dec; 164(2):243-9. PubMed ID: 3244130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of wing pronation in evasive steering of locusts.
    Ribak G; Rand D; Weihs D; Ayali A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):541-55. PubMed ID: 22547148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reorganization of sensory regulation of locust flight after partial deafferentation.
    Büschges A; Ramirez JM; Pearson KG
    J Neurobiol; 1992 Feb; 23(1):31-43. PubMed ID: 1564454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic startle/escape reactions in tethered flying locusts: motor patterns and wing kinematics underlying intentional steering.
    Dawson JW; Leung FH; Robertson RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jul; 190(7):581-600. PubMed ID: 15127218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory-evoked evasive manoeuvres in free-flying locusts and moths.
    Dawson JW; Kutsch W; Robertson RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jan; 190(1):69-84. PubMed ID: 14655020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forewing movements and intracellular motoneurone stimulation in tethered flying locusts.
    Hedwig B; g
    J Exp Biol; 1998 Jun; 201 (Pt 12)():731-44. PubMed ID: 9450981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of the flight system following ablation of the tegulae in immature adult locusts.
    Gee C; Robertson R
    J Exp Biol; 1996; 199(Pt 6):1395-403. PubMed ID: 9319291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust.
    Burrows M
    J Exp Biol; 1975 Feb; 62(1):189-219. PubMed ID: 168304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation.
    Büschges A; Ramirez JM; Driesang R; Pearson KG
    J Neurobiol; 1992 Feb; 23(1):44-60. PubMed ID: 1373440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projections of the wing stretch receptors to central flight neurons in the locust.
    Reye DN; Pearson KG
    J Neurosci; 1987 Aug; 7(8):2476-87. PubMed ID: 3612248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust.
    Rind FC; Santer RD; Wright GA
    J Neurophysiol; 2008 Aug; 100(2):670-80. PubMed ID: 18509080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between muscle structure and filter characteristics of the muscle-joint system in three orthopteran insect species.
    BÄSsler D; BÜSchges A; Meditz S; BÄSsler U
    J Exp Biol; 1996; 199(Pt 10):2169-83. PubMed ID: 9320083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gliding behaviour elicited by lateral looming stimuli in flying locusts.
    Santer RD; Simmons PJ; Rind FC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):61-73. PubMed ID: 15558287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optomotor control of course and altitude in Drosophila melanogaster is correlated with distinct activities of at least three pairs of flight steering muscles.
    Heide G; Götz KG
    J Exp Biol; 1996 Aug; 199(Pt 8):1711-26. PubMed ID: 8708578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extremely Low-Frequency Electromagnetic Fields Entrain Locust Wingbeats.
    Shepherd S; Jackson CW; Sharkh SM; Aonuma H; Oliveira EE; Newland PL
    Bioelectromagnetics; 2021 May; 42(4):296-308. PubMed ID: 33822398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tegula function during free locust flight in relation to motor pattern, flight speed and aerodynamic output.
    Fischer H; Ebert E
    J Exp Biol; 1999 Mar; 202 (Pt 6)():711-21. PubMed ID: 10021324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.