These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 931935)

  • 1. Delineation of flow-limiting segment and predicted airway resistance by movable catheter.
    Smaldone GC; Bergofsky EH
    J Appl Physiol; 1976 Jun; 40(6):943-52. PubMed ID: 931935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of increased maximum expiratory flow during HeO2 breathing in dogs.
    Mink S; Ziesmann M; Wood LD
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Sep; 47(3):490-502. PubMed ID: 533741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does HeO2 increase maximum expiratory flow in human lungs?
    Mink SN; Wood LD
    J Clin Invest; 1980 Oct; 66(4):720-9. PubMed ID: 7419718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The compliance curve for the flow limiting segments of the airway. I. Model studies.
    Pedersen OF; Nielsen TM
    Acta Physiol Scand; 1977 Apr; 99(4):385-98. PubMed ID: 857610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location of flow-limiting segments via airway catheters near residual volume in humans.
    Smaldone GC; Smith PL
    J Appl Physiol (1985); 1985 Aug; 59(2):502-8. PubMed ID: 4030602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The critical transmural pressure of the abirway.
    Pedersen OF; Nielsen TM
    Acta Physiol Scand; 1976 Aug; 97(4):426-46. PubMed ID: 970143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Airway compliance and flow limitation during forced expiration in dogs.
    Pedersen OF; Thiessen B; Lyager S
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Feb; 52(2):357-69. PubMed ID: 7061290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of intrathoracic airway mechanics during lung growth.
    De Troyer A; Yernault JC; Englert M; Baran D; Paiva M
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Apr; 44(4):521-7. PubMed ID: 640914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isovolume pressure-flow relationships in intrapulmonary bronchi of excised dog lungs.
    Suzuki S; Sasaki H; Sekizawa K; Takishima T
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Feb; 52(2):295-303. PubMed ID: 7061285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The study of maximal nasal inspiratory flow in humans.
    Gold AR; Smith PL; Schwartz AR
    J Appl Physiol (1985); 1996 Aug; 81(2):627-35. PubMed ID: 8872627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pulmonary vascular pressure on bronchial collapsibility of excised dog lungs.
    Sasaki H; Takishima T; Sasaki T
    Jpn J Physiol; 1977; 27(2):157-66. PubMed ID: 916374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Series distribution of airway collapsibility in dogs.
    Nakamura M; Sasaki H; Sekizawa K; Ishii M; Takishima T; Hoppin FG
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Feb; 50(2):325-33. PubMed ID: 7204206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of regional inhomogeneity on collateral airway resistance.
    Fuller SD; Robinson NE
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jul; 57(1):254-61. PubMed ID: 6469786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of maximum expiratory flow rate from area-transmural pressure curve of compressed airway.
    Jones JG; Fraser RB; Nadel JA
    J Appl Physiol; 1975 Jun; 38(6):1002-11. PubMed ID: 1141112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of increased collateral airway resistance during inhomogeneous inflation of excised dog lungs.
    Fuller SD; Robinson NE
    Respir Physiol; 1988 Dec; 74(3):253-63. PubMed ID: 3222560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density dependence of maximum expiratory flow in the dog.
    Pedersen OF; Castile RG; Drazen JM; Ingram RH
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Aug; 53(2):397-404. PubMed ID: 7118661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lung surface tension on bronchial collapsibility in excised dog lungs.
    Nakamura M; Sasaki H; Takishima T
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Oct; 47(4):692-700. PubMed ID: 511675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of maximal expiratory flow in excised human lungs.
    Hyatt RE; Wilson TA; Bar-Yishay E
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Jun; 48(6):991-8. PubMed ID: 7380711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of intrapulmonary bronchial dimensions during expiratory flow in excised lungs.
    Hughes JM; Jones HA; Wilson AG; Grant BJ; Pride NB
    J Appl Physiol; 1974 Nov; 37(5):684-94. PubMed ID: 4436194
    [No Abstract]   [Full Text] [Related]  

  • 20. Correlation between lung structure and function in a canine model of emphysema.
    Klassen T; Thurlbeck WM; Berend N
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Aug; 51(2):321-6. PubMed ID: 7263439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.