These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 931949)

  • 21. Molecular cloning, expression, and analysis of the genes of the homoprotocatechuate catabolic pathway of Escherichia coli C.
    Jenkins JR; Cooper RA
    J Bacteriol; 1988 Nov; 170(11):5317-24. PubMed ID: 3053656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida.
    Chapman PJ; Ribbons DW
    J Bacteriol; 1976 Mar; 125(3):985-98. PubMed ID: 942589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of O-ethylhomoserine by bacteria.
    Murooka Y; Harada T
    J Bacteriol; 1968 Aug; 96(2):314-7. PubMed ID: 5674048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of 3-hydroxybenzoate by bacteria of the genus Bacillus.
    Crawford RL
    Appl Microbiol; 1975 Sep; 30(3):439-44. PubMed ID: 810087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catabolism of aromatic biogenic amines by Pseudomonas aeruginosa PAO1 via meta cleavage of homoprotocatechuic acid.
    Cuskey SM; Olsen RH
    J Bacteriol; 1988 Jan; 170(1):393-9. PubMed ID: 3121590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolism of tetralin (1,2,3,4-tetrahydronaphthalene) in Corynebacterium sp. strain C125.
    Sikkema J; de Bont JA
    Appl Environ Microbiol; 1993 Feb; 59(2):567-72. PubMed ID: 8434923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial aromatization of steroids.
    Vézina C; Sehgal SN; Singh K; Kluepfel D
    Prog Ind Microbiol; 1971; 10():1-47. PubMed ID: 4945410
    [No Abstract]   [Full Text] [Related]  

  • 28. [Formation of primary alcohols and palmitic acid in the microbiological oxidation of hexadecane].
    Berezin IV; Bonartseva GN; Ol'sinskaia NL; Vorob'eva LI; Ergorov NS
    Prikl Biokhim Mikrobiol; 1975; 11(5):653-6. PubMed ID: 1187568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conversion of extradiol aromatic ring-cleaving homoprotocatechuate 2,3-dioxygenase into an intradiol cleaving enzyme.
    Groce SL; Lipscomb JD
    J Am Chem Soc; 2003 Oct; 125(39):11780-1. PubMed ID: 14505375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of 4-hydroxyphenylacetic acid by Trichosporon cutaneum.
    Sparnins VL; Anderson JJ; Omans J; Dagley S
    J Bacteriol; 1978 Oct; 136(1):449-51. PubMed ID: 30749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of protocatechuate in Pseudomonas testosteroni by a pathway involving oxidation of the product of meta-fission.
    Dennis DA; Chapman PJ; Dagley S
    J Bacteriol; 1973 Jan; 113(1):521-3. PubMed ID: 4143957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrocarbon cooxidation in microbial systems.
    Raymond RL; Jamison VW; Hudson JO
    Lipids; 1971 Jul; 6(7):453-7. PubMed ID: 4941184
    [No Abstract]   [Full Text] [Related]  

  • 33. Catabolism of aromatics in Pseudomonas putida U. Formal evidence that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways.
    Olivera ER; Reglero A; Martínez-Blanco H; Fernández-Medarde A; Moreno MA; Luengo JM
    Eur J Biochem; 1994 Apr; 221(1):375-81. PubMed ID: 8168524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial catabolism of threonine. Threonine degradation initiated by L-threonine-NAD+ oxidoreductase.
    Bell SC; Turner JM
    Biochem J; 1976 May; 156(2):449-58. PubMed ID: 942418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. L-Tyrosine enhancement of the elevation of 3,4-dihydroxyphenylacetic acid concentration in rat brain by spiperone and amfonelic acid.
    Fuller RW; Snoddy HD
    J Pharm Pharmacol; 1982 Feb; 34(2):117-8. PubMed ID: 6121871
    [No Abstract]   [Full Text] [Related]  

  • 36. Diversity of L-methionine catabolism pathways in cheese-ripening bacteria.
    Bonnarme P; Psoni L; Spinnler HE
    Appl Environ Microbiol; 2000 Dec; 66(12):5514-7. PubMed ID: 11097940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aromatic ring cleavage by homoprotocatechuate 2,3-dioxygenase: role of His200 in the kinetics of interconversion of reaction cycle intermediates.
    Groce SL; Lipscomb JD
    Biochemistry; 2005 May; 44(19):7175-88. PubMed ID: 15882056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient biosynthesis of 3, 4-dihydroxyphenylacetic acid in Escherichia coli.
    Li X; Shen X; Wang J; Ri HI; Mi CY; Yan Y; Sun X; Yuan Q
    J Biotechnol; 2019 Mar; 294():14-18. PubMed ID: 30771441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake.
    Bouchez-Naïtali M; Rakatozafy H; Marchal R; Leveau JY; Vandecasteele JP
    J Appl Microbiol; 1999 Mar; 86(3):421-8. PubMed ID: 10196747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of 3,4-dihydroxyphenylacetic acid and 3-methoxytyramine specific activity rat striatum.
    Di Giulio AM; Groppetti A; Algeri S; Ponzio F; Cattabeni F; Galli CL
    Anal Biochem; 1979 Jan; 92(1):82-90. PubMed ID: 426290
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.