These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9319709)

  • 1. Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus.
    ReipschlÄGer A; PÖRtner H
    J Exp Biol; 1996; 199(Pt 8):1801-7. PubMed ID: 9319709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-base regulation, metabolism and energetics in sipunculus nudus as a function of ambient carbon dioxide level.
    PORtner H; ReipschlAGerY A; n
    J Exp Biol; 1998 Jan; 201 (Pt 1)():43-55. PubMed ID: 9390935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the cost of pHi regulation during metabolic depression: a (31)P-NMR study in invertebrate (Sipunculus nudus) isolated muscle.
    Pörtner HO; Bock C; Reipschläger A
    J Exp Biol; 2000 Aug; 203(Pt 16):2417-28. PubMed ID: 10903156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in metabolic rate and N excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid-base variables.
    Langenbuch M; Pörtner HO
    J Exp Biol; 2002 Apr; 205(Pt 8):1153-60. PubMed ID: 11919274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for adenosine in metabolic depression in the marine invertebrate Sipunculus nudus.
    Reipschläger A; Nilsson GE; Pörtner HO
    Am J Physiol; 1997 Jan; 272(1 Pt 2):R350-6. PubMed ID: 9039028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2.
    Strobel A; Bennecke S; Leo E; Mintenbeck K; Pörtner HO; Mark FC
    Front Zool; 2012 Oct; 9(1):28. PubMed ID: 23075125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of extracellular pH, PCO2 and HCO3- on intracellular pH in isolated type-I cells of the neonatal rat carotid body.
    Buckler KJ; Vaughan-Jones RD; Peers C; Lagadic-Gossmann D; Nye PC
    J Physiol; 1991 Dec; 444():703-21. PubMed ID: 1822566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extra- and intracellular pH in the brain during seizures and in the recovery period following the arrest of seizure activity.
    Siesjö BK; von Hanwehr R; Nergelius G; Nevander G; Ingvar M
    J Cereb Blood Flow Metab; 1985 Mar; 5(1):47-57. PubMed ID: 3972923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete intracellular pH protection during extracellular pH depression is associated with hypercarbia tolerance in white sturgeon, Acipenser transmontanus.
    Baker DW; Matey V; Huynh KT; Wilson JM; Morgan JD; Brauner CJ
    Am J Physiol Regul Integr Comp Physiol; 2009 Jun; 296(6):R1868-80. PubMed ID: 19339675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of cell pH and buffer capacity on the extracellular acid-base change in the skeletal muscle of bullfrog.
    Fujimoto M; Morimoto Y; Kubota T
    Jpn J Physiol; 1988; 38(6):799-818. PubMed ID: 3150473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular pH regulation and buffer capacity in CO2/HCO3-buffered media in cultured epithelial cells from rainbow trout gills.
    Wood CM; Pärt P
    J Comp Physiol B; 2000 May; 170(3):175-84. PubMed ID: 10841257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of softwater acclimation on respiratory gas transfer in the rainbow trout Oncorhynchus mykiss.
    Gilmour A; Fenwick J; Perry S
    J Exp Biol; 1995; 198(Pt 12):2557-67. PubMed ID: 9320486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential impacts of elevated CO2 and acidosis on the energy budget of gill and liver cells from Atlantic cod, Gadus morhua.
    Stapp LS; Kreiss CM; Pörtner HO; Lannig G
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Sep; 187():160-7. PubMed ID: 26005104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid-base regulation and ion transfers in the carp (Cyprinus carpio): pH compensation during graded long- and short-term environmental hypercapnia, and the effect of bicarbonate infusion.
    Claiborne JB; Heisler N
    J Exp Biol; 1986 Nov; 126():41-61. PubMed ID: 3027233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of intra- and extracellular pH in the rat brain in acute hypercapnia: a re-appraisal.
    Katsura K; Kristián T; Nair R; Siesjö BK
    Brain Res; 1994 Jul; 651(1-2):47-56. PubMed ID: 7922589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.
    Shartau RB; Crossley DA; Kohl ZF; Brauner CJ
    J Exp Biol; 2016 Jul; 219(Pt 13):1994-2002. PubMed ID: 27091863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular acid-base responses to environmental hyperoxia and normoxic recovery in rainbow trout.
    Wood CM; LeMoigne J
    Respir Physiol; 1991 Oct; 86(1):91-113. PubMed ID: 1759056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal ion transport and intracellular pH during acute respiratory alkalosis and acidosis.
    Kurtin P; Charney AN
    Am J Physiol; 1984 Jul; 247(1 Pt 1):G24-31. PubMed ID: 6742194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection of energy status of hypoxic cardiomyocytes by mild acidosis.
    Koop A; Piper HM
    J Mol Cell Cardiol; 1992 Jan; 24(1):55-65. PubMed ID: 1564730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia.
    Gutowska MA; Melzner F; Langenbuch M; Bock C; Claireaux G; Pörtner HO
    J Comp Physiol B; 2010 Mar; 180(3):323-35. PubMed ID: 19838713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.