BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9319809)

  • 21. WHOLE GENOME SEQUENCING OF AN AVIPOXVIRUS ASSOCIATED WITH INFECTIONS IN A GROUP OF AVIARY-HOUSED SNOW BUNTINGS (
    Le Net R; Provost C; Lalonde C; Régimbald L; Vézina F; Gagnon CA; Lair S
    J Zoo Wildl Med; 2020 Jan; 50(4):803-812. PubMed ID: 31926510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interspecific comparison of the fecal microbiota structure in three Arctic migratory bird species.
    Cho H; Lee WY
    Ecol Evol; 2020 Jun; 10(12):5582-5594. PubMed ID: 32607176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in pituitary and adrenal sensitivities allow the snow bunting (Plectrophenax nivalis), an Arctic-breeding song bird, to modulate corticosterone release seasonally.
    Romero LM; Soma KK; Wingfield JC
    J Comp Physiol B; 1998 Jul; 168(5):353-8. PubMed ID: 9706705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diversification at high latitudes: speciation of buntings in the genus Plectrophenax inferred from mitochondrial and nuclear markers.
    Maley JM; Winker K
    Mol Ecol; 2010 Feb; 19(4):785-97. PubMed ID: 20088885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Breeding on the extreme edge: modulation of the adrenocortical response to acute stress in two High Arctic passerines.
    Walker BG; Meddle SL; Romero LM; Landys MM; Reneerkens J; Wingfield JC
    J Exp Zool A Ecol Genet Physiol; 2015 Apr; 323(4):266-75. PubMed ID: 25757443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Limited heat tolerance in an Arctic passerine: Thermoregulatory implications for cold-specialized birds in a rapidly warming world.
    O'Connor RS; Le Pogam A; Young KG; Robitaille F; Choy ES; Love OP; Elliott KH; Hargreaves AL; Berteaux D; Tam A; Vézina F
    Ecol Evol; 2021 Feb; 11(4):1609-1619. PubMed ID: 33613993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies.
    Hegedüs R; Akesson S; Horváth G
    J Opt Soc Am A Opt Image Sci Vis; 2007 Aug; 24(8):2347-56. PubMed ID: 17621337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The development of migratory orientation mechanisms.
    Able KP
    EXS; 1991; 60():166-79. PubMed ID: 1838514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bird Migration: Influence of Physiological State upon Celestial Orientation.
    Emlen ST
    Science; 1969 Aug; 165(3894):716-8. PubMed ID: 17780719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hoverflies use a time-compensated sun compass to orientate during autumn migration.
    Massy R; Hawkes WLS; Doyle T; Troscianko J; Menz MHM; Roberts NW; Chapman JW; Wotton KR
    Proc Biol Sci; 2021 Sep; 288(1959):20211805. PubMed ID: 34547904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A magnet attached to the forehead disrupts magnetic compass orientation in a migratory songbird.
    Packmor F; Kishkinev D; Bittermann F; Kofler B; Machowetz C; Zechmeister T; Zawadzki LC; Guilford T; Holland RA
    J Exp Biol; 2021 Nov; 224(22):. PubMed ID: 34713887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The depth of the honeybee's backup sun-compass systems.
    Dovey KM; Kemfort JR; Towne WF
    J Exp Biol; 2013 Jun; 216(Pt 11):2129-39. PubMed ID: 23430992
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Snow buntings (Plectrophenax nivealis) as bio-indicators for exposure differences to legacy and emerging persistent organic pollutants from the Arctic terrestrial environment on Svalbard.
    Warner NA; Sagerup K; Kristoffersen S; Herzke D; Gabrielsen GW; Jenssen BM
    Sci Total Environ; 2019 Jun; 667():638-647. PubMed ID: 30833262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The direction of celestial rotation influences the development of stellar orientation in young garden warblers (Sylvia borin).
    Weindler P; Baumetz M; Wiltschko W
    J Exp Biol; 1997; 200(Pt 15):2107-13. PubMed ID: 9320019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic movement models identify continuously updated autumn migration cues in Arctic caribou.
    Cameron MD; Eisaguirre JM; Breed GA; Joly K; Kielland K
    Mov Ecol; 2021 Nov; 9(1):54. PubMed ID: 34724991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From Svalbard to Siberia: Passerines breeding in the High Arctic also endure the extreme cold of the Western Steppe.
    Snell KRS; Stokke BG; Moksnes A; Thorup K; Fossøy F
    PLoS One; 2018; 13(9):e0202114. PubMed ID: 30183717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autumn migratory orientation and route choice in early and late dunlins Calidris alpina captured at a stopover site in Alaska.
    Åkesson S; Grönroos J; Bianco G
    Biol Open; 2021 Apr; 10(4):. PubMed ID: 33913474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The flexible migratory orientation system of the savannah sparrow (Passerculus sandwichensis).
    Able K; Able M
    J Exp Biol; 1996; 199(Pt 1):3-8. PubMed ID: 9317228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The interaction of stars and magnetic field in the orientation system of night migrating birds. I. Autumn experiments with European Warblers (gen. Sylvia).
    Wiltschko W; Wiltschko R
    Z Tierpsychol; 1975 Jun; 37(4):337-55. PubMed ID: 1229769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reed warbler orientation: initiation of nocturnal migratory flights in relation to visibility of celestial cues at dusk.
    Åkesson S; Walinder G; Karlsson L; Ehnbom S
    Anim Behav; 2001 Jan; 61(1):181-189. PubMed ID: 11170708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.