These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9319809)

  • 61. Migratory Eurasian Reed Warblers Can Use Magnetic Declination to Solve the Longitude Problem.
    Chernetsov N; Pakhomov A; Kobylkov D; Kishkinev D; Holland RA; Mouritsen H
    Curr Biol; 2017 Sep; 27(17):2647-2651.e2. PubMed ID: 28823677
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The bird ectoparasite Dermanyssus hirundinis (Acari, Mesostigmata) in the High Arctic; a new parasitic mite to Spitsbergen, Svalbard.
    Gwiazdowicz DJ; Coulson SJ; Grytnes JA; Pilskog HE
    Acta Parasitol; 2012 Dec; 57(4):378-84. PubMed ID: 23129197
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Magnetic orientation in birds.
    Wiltschko W; Wiltschko R
    J Exp Biol; 1996; 199(Pt 1):29-38. PubMed ID: 9317275
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Magnetic direction finding: evidence for its use in migratory indigo buntings.
    Emlen ST; Wiltschko W; Demong NJ; Wiltschko R; Bergman S
    Science; 1976 Aug; 193(4252):505-8. PubMed ID: 17841823
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Snapshot-Based Mechanism for Celestial Orientation.
    El Jundi B; Foster JJ; Khaldy L; Byrne MJ; Dacke M; Baird E
    Curr Biol; 2016 Jun; 26(11):1456-62. PubMed ID: 27185557
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Feasibility of sun and magnetic compass mechanisms in avian long-distance migration.
    Muheim R; Schmaljohann H; Alerstam T
    Mov Ecol; 2018; 6():8. PubMed ID: 29992024
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Magnetic storms disrupt nocturnal migratory activity in songbirds.
    Bianco G; Ilieva M; Åkesson S
    Biol Lett; 2019 Mar; 15(3):20180918. PubMed ID: 30862307
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Polarized light cues underlie compass calibration in migratory songbirds.
    Muheim R; Phillips JB; Akesson S
    Science; 2006 Aug; 313(5788):837-9. PubMed ID: 16902138
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Two different types of light-dependent responses to magnetic fields in birds.
    Wiltschko R; Ritz T; Stapput K; Thalau P; Wiltschko W
    Curr Biol; 2005 Aug; 15(16):1518-23. PubMed ID: 16111946
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field.
    Kavokin K; Chernetsov N; Pakhomov A; Bojarinova J; Kobylkov D; Namozov B
    J R Soc Interface; 2014 Aug; 11(97):20140451. PubMed ID: 24942848
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spring phenology drives range shifts in a migratory Arctic ungulate with key implications for the future.
    Severson JP; Johnson HE; Arthur SM; Leacock WB; Suitor MJ
    Glob Chang Biol; 2021 Oct; 27(19):4546-4563. PubMed ID: 33993595
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti.
    Schwarz S; Albert L; Wystrach A; Cheng K
    J Exp Biol; 2011 Mar; 214(Pt 6):901-6. PubMed ID: 21346116
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Marsh frogs, Pelophylax ridibundus, determine migratory direction by magnetic field.
    Shakhparonov VV; Ogurtsov SV
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jan; 203(1):35-43. PubMed ID: 27885506
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Integration of polarization and chromatic cues in the insect sky compass.
    el Jundi B; Pfeiffer K; Heinze S; Homberg U
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Jun; 200(6):575-89. PubMed ID: 24589854
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Warming in the land of the midnight sun: breeding birds may suffer greater heat stress at high- versus low-Arctic sites.
    O'Connor RS; Le Pogam A; Young KG; Love OP; Cox CJ; Roy G; Robitaille F; Elliott KH; Hargreaves AL; Choy ES; Gilchrist HG; Berteaux D; Tam A; Vézina F
    Proc Biol Sci; 2022 Aug; 289(1981):20220300. PubMed ID: 36000233
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration.
    Tøttrup AP; Klaassen RH; Strandberg R; Thorup K; Kristensen MW; Jørgensen PS; Fox J; Afanasyev V; Rahbek C; Alerstam T
    Proc Biol Sci; 2012 Mar; 279(1730):1008-16. PubMed ID: 21900322
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Magnetic compass cues and visual pattern learning in honeybees.
    Frier H; Edwards E; Smith C; Neale S; Collett T
    J Exp Biol; 1996; 199(Pt 6):1353-61. PubMed ID: 9319243
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Extreme spring conditions in the Arctic delay spring phenology of long-distance migratory songbirds.
    Boelman NT; Krause JS; Sweet SK; Chmura HE; Perez JH; Gough L; Wingfield JC
    Oecologia; 2017 Sep; 185(1):69-80. PubMed ID: 28779226
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Longspurs and snow buntings: phylogeny and biogeography of a high-latitude clade (Calcarius).
    Klicka J; Zink RM; Winker K
    Mol Phylogenet Evol; 2003 Feb; 26(2):165-75. PubMed ID: 12565028
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nocturnal melatonin levels decode daily light environment and reflect seasonal states in night-migratory blackheaded bunting (Emberiza melanocephala).
    Malik S; Singh J; Trivedi AK; Singh S; Rani S; Kumar V
    Photochem Photobiol Sci; 2015 May; 14(5):963-71. PubMed ID: 25764497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.