These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 931993)

  • 1. Comparison of initial velocity and binding data for allosteric adenosine monophosphate nucleosidase.
    Schramm VL
    J Biol Chem; 1976 Jun; 251(11):3417-24. PubMed ID: 931993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenylate degradation in Escherichia coli. The role of AMP nucleosidase and properties of the purified enzyme.
    Leung HB; Schramm VL
    J Biol Chem; 1980 Nov; 255(22):10867-74. PubMed ID: 7000783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic properties of allosteric adenosine monophosphate nucleosidase from Azotobacter vinelandii.
    Schramm VL
    J Biol Chem; 1974 Mar; 249(6):1729-36. PubMed ID: 4361821
    [No Abstract]   [Full Text] [Related]  

  • 4. Synthesis of a new 8-spin-labeled analog of adenosine 5'-phosphate and its interaction with AMP nucleosidase.
    DeWolf WE; Schramm VL
    J Biol Chem; 1979 Jul; 254(14):6215-7. PubMed ID: 221493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and activation for allosteric adenosine 5'-monophosphate nucleosidase. Kinetic alpha-deuterium isotope effects for the enzyme-catalyzed hydrolysis of adenosine 5'-monophosphate and nicotinamide mononucleotide.
    Skoog MT
    J Biol Chem; 1986 Apr; 261(10):4451-9. PubMed ID: 3485632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavodoxin: an allosteric inhibitor of AMP nucleosidase from Azotobacter vinelandii.
    Yoshino M; Murakami K; Tsushima K
    J Biochem; 1976 Oct; 80(4):839-43. PubMed ID: 1010848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion-dependent activation of AMP nucleosidase from Azotobacter vinelandii.
    Murakami K; Yoshino M
    Biochim Biophys Acta; 1980; 613(1):153-9. PubMed ID: 7378416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of substantial separation of the catalytic and allosteric sites of AMP nucleosidase.
    DeWolf WE; Markham GD; Schramm VL
    J Biol Chem; 1980 Sep; 255(17):8210-5. PubMed ID: 6251048
    [No Abstract]   [Full Text] [Related]  

  • 9. Interaction of Mn2+ and MnATP2- with the allosteric sites of AMP nucleosidase.
    Schramm VL; Reed GH
    J Biol Chem; 1980 Jun; 255(12):5796-801. PubMed ID: 6247346
    [No Abstract]   [Full Text] [Related]  

  • 10. AMP nucleosidase from Azotobacter vinelandii. 3. Kinetics of allosteric interactions.
    Yoshino M; Ogasawara N
    J Biochem; 1972 Aug; 72(2):223-33. PubMed ID: 4345428
    [No Abstract]   [Full Text] [Related]  

  • 11. Kinetics of adenosine monophosphate nucleosidase inactivation by phosphate and protection by substrate and allosteric activator.
    Schramm VL; Fullin FA
    J Biol Chem; 1978 Apr; 253(7):2161-7. PubMed ID: 632260
    [No Abstract]   [Full Text] [Related]  

  • 12. Catalytic and regulatory site composition of yeast AMP deaminase by comparative binding and rate studies. Resolution of the cooperative mechanism.
    Merkler DJ; Schramm VL
    J Biol Chem; 1990 Mar; 265(8):4420-6. PubMed ID: 2407736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of adenosine monophosphate levels as a function of adenosine triphosphate and inorganic phosphate. A proposed metabolic role for adenosine monophosphate nucleosidase from Azotobacter vinelandii.
    Schramm VL; Leung H
    J Biol Chem; 1973 Dec; 248(23):8313-5. PubMed ID: 4752957
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of allosteric activation on the primary and secondary kinetic isotope effects for three AMP nucleosidases.
    Parkin DW; Schramm VL
    J Biol Chem; 1984 Aug; 259(15):9418-25. PubMed ID: 6378909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition-state analysis of a Vmax mutant of AMP nucleosidase by the application of heavy-atom kinetic isotope effects.
    Parkin DW; Mentch F; Banks GA; Horenstein BA; Schramm VL
    Biochemistry; 1991 May; 30(18):4586-94. PubMed ID: 2021651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The catalytic site of AMP nucleosidase. Substrate specificity and pH effects with AMP and formycin 5'-PO4.
    DeWolf WE; Fullin FA; Schramm VL
    J Biol Chem; 1979 Nov; 254(21):10868-75. PubMed ID: 40976
    [No Abstract]   [Full Text] [Related]  

  • 17. Stabilization of allosteric adenosine monophosphate nucleosidase by inorganic salts, substrate, and essential activator.
    Schramm VL; Hochstein LI
    Biochemistry; 1971 Aug; 10(18):3411-7. PubMed ID: 5118623
    [No Abstract]   [Full Text] [Related]  

  • 18. Transition-state structures for N-glycoside hydrolysis of AMP by acid and by AMP nucleosidase in the presence and absence of allosteric activator.
    Mentch F; Parkin DW; Schramm VL
    Biochemistry; 1987 Feb; 26(3):921-30. PubMed ID: 3552038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pathway of adenylate catabolism in Azotobacter vinelandii. Evidence for adenosine monophosphate nucleosidase as the regulatory enzyme.
    Schramm VL; Lazorik FC
    J Biol Chem; 1975 Mar; 250(5):1801-8. PubMed ID: 1167548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of magnesium ion (Mg2+) and the magnesium adenosine triphosphate ion (MgATP2-) on pigeon liver pyruvate carboxylase.
    Dugal BS; Louis BM
    Enzyme; 1975; 20(2):98-110. PubMed ID: 236182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.