These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 932000)

  • 41. Calmodulin-dependent elevation of calcium transport associated with calmodulin-dependent phosphorylation in cardiac sarcoplasmic reticulum.
    Plank B; Wyskovsky W; Hellmann G; Suko J
    Biochim Biophys Acta; 1983 Jul; 732(1):99-109. PubMed ID: 6307368
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differentiation between Ca2+ transport and ATP-induced Ca2+ binding by sarcoplasmic reticulum.
    Vale MG; Carvalho AP
    Biochim Biophys Acta; 1981 Apr; 643(1):168-76. PubMed ID: 6786348
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrical pump currents generated by the Ca2+-ATPase of sarcoplasmic reticulum vesicles adsorbed on black lipid membranes.
    Hartung K; Grell E; Hasselbach W; Bamberg E
    Biochim Biophys Acta; 1987 Jun; 900(2):209-20. PubMed ID: 2954585
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phosphorylation of the calcium-transporting adenosinetriphosphatase by lanthanum ATP: rapid phosphoryl transfer following a rate-limiting conformational change.
    Hanel AM; Jencks WP
    Biochemistry; 1990 May; 29(21):5210-20. PubMed ID: 2143081
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Calcium release from vesicles of heavy sarcoplasmic reticulum of rabbit skeletal muscles].
    Smirnova MB; Rubtsov AM; Boldyrev AA
    Ukr Biokhim Zh (1978); 1989; 61(1):57-64. PubMed ID: 2472698
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcium dependence of Pi phosphorylation of sarcoplasmic reticulum Ca2+-ATPase at low water content: water dependence of the E2-->E1 conversion.
    Sodré CL; Scofano HM; Barrabin H
    Biochim Biophys Acta; 1999 Jun; 1419(1):55-63. PubMed ID: 10366670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles.
    Meissner G
    J Biol Chem; 1981 Jan; 256(2):636-43. PubMed ID: 7451464
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modification of ATP regulatory function in sarcoplasmic reticulum Ca2(+)-ATPase by hydrophobic molecules.
    Wolosker H; Petretski JH; De Meis L
    Eur J Biochem; 1990 Nov; 193(3):873-7. PubMed ID: 2147416
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnesium permeability of sarcoplasmic reticulum. Mg2+ is not countertransported during ATP-dependent Ca2+ uptake by sarcoplasmic reticulum.
    Salama G; Scarpa A
    J Biol Chem; 1985 Sep; 260(21):11697-705. PubMed ID: 3930482
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Ability of nucleoside triphosphates to provide for Ca 2+ transport by sarcoplasmic reticulum fragments].
    Lushchak VI
    Ukr Biokhim Zh (1978); 1990; 62(2):64-9. PubMed ID: 2142350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. There is only one phosphoenzyme intermediate with bound calcium on the reaction pathway of the sarcoplasmic reticulum calcium ATPase.
    Myung J; Jencks WP
    Biochemistry; 1995 Mar; 34(9):3077-83. PubMed ID: 7893720
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The thermodynamic efficiency of the Ca2+-Mg2+-ATPase is one hundred percent.
    Trevorrow K; Haynes DH
    J Bioenerg Biomembr; 1984 Feb; 16(1):53-9. PubMed ID: 6152629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cardiac sarcolemmal and sarcoplasmic reticulum membrane vesicles exhibit distinctive (Ca-Mg)-ATPase substrate specificities.
    Trumble WR; Sutko JL; Reeves JP
    J Biol Chem; 1981 Jul; 256(14):7101-4. PubMed ID: 6114092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibitory and stimulatory effects of fluoride on the calcium pump of cardiac sarcoplasmic reticulum.
    Narayanan N; Su N; Bedard P
    Biochim Biophys Acta; 1991 Nov; 1070(1):83-91. PubMed ID: 1836355
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of adenine nucleotides on the Ca2+-gated cation channel in sarcoplasmic reticulum vesicles.
    Yamanouchi H; Kanemasa T; Kasai M
    J Biochem; 1984 Jan; 95(1):161-6. PubMed ID: 6323391
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphorylation of purified bovine cardiac sarcolemma and potassium-stimulated calcium uptake.
    Flockerzi V; Mewes R; Ruth P; Hofmann F
    Eur J Biochem; 1983 Sep; 135(1):131-42. PubMed ID: 6309517
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical modification of sarcoplasmic reticulum with methylbenzimidate. Stimulation of Ca2+ efflux.
    Shoshan-Barmatz V
    Biochem J; 1987 Apr; 243(1):165-73. PubMed ID: 2955781
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphorylation from inorganic phosphate and ATP synthesis of sarcoplasmic membranes.
    Beil FU; von Chak D; Hasselbach W
    Eur J Biochem; 1977 Nov; 81(1):151-64. PubMed ID: 590264
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rate of calcium release and ATP synthesis in sarcoplasmic reticulum vesicles.
    Sande-Lemos MP; De Meis L
    Eur J Biochem; 1988 Jan; 171(1-2):273-8. PubMed ID: 2448140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium dependence during single-cycle catalysis of the sarcoplasmic reticulum ATPase.
    Davidson GA; Berman MC
    J Biol Chem; 1988 Aug; 263(24):11786-91. PubMed ID: 2969894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.