These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9320068)

  • 1. Modulation of attack behavior and its effect on feeding performance in a trophic generalist fish,
    Nemeth D
    J Exp Biol; 1997; 200(Pt 15):2155-64. PubMed ID: 9320068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of buccal pressure during prey capture in Hexagrammos decagrammus (Teleostei: Hexagrammidae).
    Nemeth D
    J Exp Biol; 1997; 200(Pt 15):2145-54. PubMed ID: 9320058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the use of ram and suction during prey capture by cichlid fishes.
    Wainwright PC; Ferry-Graham LA; Waltzek TB; Carroll AM; Hulsey CD; Grubich JR
    J Exp Biol; 2001 Sep; 204(Pt 17):3039-51. PubMed ID: 11551992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of prey size and mobility on prey-capture kinematics in leopard sharks triakis semifasciata.
    Ferry-Graham LA
    J Exp Biol; 1998 Aug; 201 (Pt 16)():2433-44. PubMed ID: 9679105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prey capture in long-jawed butterflyfishes (Chaetodontidae): the functional basis of novel feeding habits.
    Ferry-Graham LA; Wainwright PC; Bellwood DR
    J Exp Mar Biol Ecol; 2001 Jan; 256(2):167-184. PubMed ID: 11164861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body ram, not suction, is the primary axis of suction-feeding diversity in spiny-rayed fishes.
    Longo SJ; McGee MD; Oufiero CE; Waltzek TB; Wainwright PC
    J Exp Biol; 2016 Jan; 219(Pt 1):119-28. PubMed ID: 26596534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ram speed on prey capture kinematics of juvenile Indo-Pacific tarpon, Megalops cyprinoides.
    Tran HQ; Mehta RS; Wainwright PC
    Zoology (Jena); 2010 Mar; 113(2):75-84. PubMed ID: 20188531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to capture fish in a school? Effect of successive predator attacks on seabird feeding success.
    Thiebault A; Semeria M; Lett C; Tremblay Y
    J Anim Ecol; 2016 Jan; 85(1):157-67. PubMed ID: 26768335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of prey capture kinematics in the cheeklined wrasse Oxycheilinus digrammus (Teleostei: Labridae).
    Ferry-Graham LA; Wainwright PC; Westneat MW; Bellwood DR
    J Exp Zool; 2001 Jul; 290(2):88-100. PubMed ID: 11471138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of shark prey capture kinematics in response to sensory deprivation.
    Gardiner JM; Atema J; Hueter RE; Motta PJ
    Zoology (Jena); 2017 Feb; 120():42-52. PubMed ID: 27618704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turning performance of brief squid
    Jastrebsky RA; Bartol IK; Krueger PS
    J Exp Biol; 2017 Mar; 220(Pt 5):908-919. PubMed ID: 28167806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of feeding morphology and kinematics in juvenile fishes: a case study of the cottid fish Clinocottus analis.
    Cook A
    J Exp Biol; 1996; 199(Pt 9):1961-71. PubMed ID: 9319872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution and ecology of feeding in elasmobranchs.
    Wilga CD; Motta PJ; Sanford CP
    Integr Comp Biol; 2007 Jul; 47(1):55-69. PubMed ID: 21672820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Largemouth bass (Micropterus salmoides) switch feeding modalities in response to sensory deprivation.
    Gardiner JM; Motta PJ
    Zoology (Jena); 2012 Apr; 115(2):78-83. PubMed ID: 22285791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbidity interferes with foraging success of visual but not chemosensory predators.
    Lunt J; Smee DL
    PeerJ; 2015; 3():e1212. PubMed ID: 26401444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes.
    Higham TE; Stewart WJ; Wainwright PC
    Integr Comp Biol; 2015 Jul; 55(1):6-20. PubMed ID: 25980563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Larval fish counteract ram and suction to capture evasive prey.
    Chang I; Hartline DK; Lenz PH; Takagi D
    R Soc Open Sci; 2022 Nov; 9(11):220714. PubMed ID: 36340513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature effects on ballistic prey capture by a dragonfly larva.
    Quenta Herrera E; Casas J; Dangles O; Pincebourde S
    Ecol Evol; 2018 Apr; 8(8):4303-4311. PubMed ID: 29721299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic Simulations of the Performance Landscape for Suction-Feeding Fishes Reveal Multiple Peaks for Different Prey Types.
    Olsson KH; Martin CH; Holzman R
    Integr Comp Biol; 2020 Nov; 60(5):1251-1267. PubMed ID: 32333778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Animal-borne imaging reveals novel insights into the foraging behaviors and Diel activity of a large-bodied apex predator, the American alligator (Alligator mississippiensis).
    Nifong JC; Nifong RL; Silliman BR; Lowers RH; Guillette LJ; Ferguson JM; Welsh M; Abernathy K; Marshall G
    PLoS One; 2014; 9(1):e83953. PubMed ID: 24454711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.