These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 9320244)
1. Forewing asymmetries during auditory avoidance in flying locusts. Dawson J; Dawson-Scully K; Robert D; RobertsonÝ R J Exp Biol; 1997; 200(Pt 17):2323-35. PubMed ID: 9320244 [TBL] [Abstract][Full Text] [Related]
2. Acoustic startle/escape reactions in tethered flying locusts: motor patterns and wing kinematics underlying intentional steering. Dawson JW; Leung FH; Robertson RM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jul; 190(7):581-600. PubMed ID: 15127218 [TBL] [Abstract][Full Text] [Related]
3. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects. McMillan GA; Loessin V; Gray JR J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560 [TBL] [Abstract][Full Text] [Related]
4. Thermal avoidance during flight in the locust Locusta migratoria. Robertson R; Kuhnert C; Dawson J J Exp Biol; 1996; 199(Pt 6):1383-93. PubMed ID: 9319276 [TBL] [Abstract][Full Text] [Related]
5. Role of wing pronation in evasive steering of locusts. Ribak G; Rand D; Weihs D; Ayali A J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):541-55. PubMed ID: 22547148 [TBL] [Abstract][Full Text] [Related]
6. Kinematic and aerodynamic aspects of ultrasound-induced negative phonotaxis inflying Australian field crickets (Teleogryllus oceanicus). May ML; Brodfuehrer PD; Hoy RR J Comp Physiol A; 1988 Dec; 164(2):243-9. PubMed ID: 3244130 [TBL] [Abstract][Full Text] [Related]
7. Maximum metabolic rate, relative lift, wingbeat frequency and stroke amplitude during tethered flight in the adult locust Locusta migratoria. Snelling EP; Seymour RS; Matthews PG; White CR J Exp Biol; 2012 Sep; 215(Pt 18):3317-23. PubMed ID: 22735344 [TBL] [Abstract][Full Text] [Related]
8. Forewing movements and intracellular motoneurone stimulation in tethered flying locusts. Hedwig B; g J Exp Biol; 1998 Jun; 201 (Pt 12)():731-44. PubMed ID: 9450981 [TBL] [Abstract][Full Text] [Related]
9. Kinematic compensation for wing loss in flying damselflies. Kassner Z; Dafni E; Ribak G J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807 [TBL] [Abstract][Full Text] [Related]
10. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Maybury WJ; Lehmann FO J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564 [TBL] [Abstract][Full Text] [Related]
11. Auditory-evoked evasive manoeuvres in free-flying locusts and moths. Dawson JW; Kutsch W; Robertson RM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jan; 190(1):69-84. PubMed ID: 14655020 [TBL] [Abstract][Full Text] [Related]
12. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight. Li C; Dong H Bioinspir Biomim; 2017 Feb; 12(2):026001. PubMed ID: 28059781 [TBL] [Abstract][Full Text] [Related]
13. Turning manoeuvres in free-flying locusts: high-speed video-monitoring. Berger S; Kutsch W J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):127-38. PubMed ID: 12975801 [TBL] [Abstract][Full Text] [Related]
14. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation. Büschges A; Ramirez JM; Driesang R; Pearson KG J Neurobiol; 1992 Feb; 23(1):44-60. PubMed ID: 1373440 [TBL] [Abstract][Full Text] [Related]
15. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. Wang JK; Sun M J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955 [TBL] [Abstract][Full Text] [Related]
16. Gliding behaviour elicited by lateral looming stimuli in flying locusts. Santer RD; Simmons PJ; Rind FC J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):61-73. PubMed ID: 15558287 [TBL] [Abstract][Full Text] [Related]