These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9320244)

  • 21. The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight.
    Willmott AP; Ellington CP
    J Exp Biol; 1997 Nov; 200(Pt 21):2705-22. PubMed ID: 9418029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Timing of elevator muscle activity during climbing in free locust flight.
    Fischer H; Kutsch W
    J Exp Biol; 1999 Dec; 202 Pt 24():3575-86. PubMed ID: 10574734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reorganization of sensory regulation of locust flight after partial deafferentation.
    Büschges A; Ramirez JM; Pearson KG
    J Neurobiol; 1992 Feb; 23(1):31-43. PubMed ID: 1564454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae.
    Von Busse R; Hedenström A; Winter Y; Johansson LC
    Biol Open; 2012 Dec; 1(12):1226-38. PubMed ID: 23259057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flying in reverse: kinematics and aerodynamics of a dragonfly in backward free flight.
    Bode-Oke AT; Zeyghami S; Dong H
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29950513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Projections of the wing stretch receptors to central flight neurons in the locust.
    Reye DN; Pearson KG
    J Neurosci; 1987 Aug; 7(8):2476-87. PubMed ID: 3612248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active control of free flight manoeuvres in a hawkmoth, Agrius convolvuli.
    Wang H; Ando N; Kanzaki R
    J Exp Biol; 2008 Feb; 211(Pt 3):423-32. PubMed ID: 18203998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interneurons in the flight system of the locust: distribution, connections, and resetting properties.
    Robertson RM; Pearson KG
    J Comp Neurol; 1983 Mar; 215(1):33-50. PubMed ID: 6853764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tegula function during free locust flight in relation to motor pattern, flight speed and aerodynamic output.
    Fischer H; Ebert E
    J Exp Biol; 1999 Mar; 202 (Pt 6)():711-21. PubMed ID: 10021324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural control of hindleg steering in flight in the locust.
    Lorez M
    J Exp Biol; 1995; 198(Pt 4):869-75. PubMed ID: 9318653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic noise at synapses between a wing hinge stretch receptor and flight motor neurons in the locust.
    Simmons PJ
    J Exp Biol; 2001 Jan; 204(Pt 1):127-38. PubMed ID: 11104716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuromuscular and biomechanical compensation for wing asymmetry in insect hovering flight.
    Fernández MJ; Springthorpe D; Hedrick TL
    J Exp Biol; 2012 Oct; 215(Pt 20):3631-8. PubMed ID: 22771747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerodynamics of manoeuvring flight in brown long-eared bats (
    Henningsson P; Jakobsen L; Hedenström A
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30404906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift production.
    Riskin DK; Iriarte-Díaz J; Middleton KM; Breuer KS; Swartz SM
    J Exp Biol; 2010 Dec; 213(Pt 23):4110-22. PubMed ID: 21075953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Turning manoeuvres in free-flying locusts: two-channel radio-telemetric transmission of muscle activity.
    Kutsch W; Berger S; Kautz H
    J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):139-50. PubMed ID: 12975802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina).
    Tu MS; Dickinson MH
    J Comp Physiol A; 1996 Jun; 178(6):813-30. PubMed ID: 8667294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerodynamic characteristics along the wing span of a dragonfly
    Hefler C; Qiu H; Shyy W
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30108128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.