These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 9320286)
41. Sensitivity and response dynamics of elasmobranch electrosensory primary afferent neurons to near threshold fields. Tricas TC; New JG J Comp Physiol A; 1998 Jan; 182(1):89-101. PubMed ID: 9447716 [TBL] [Abstract][Full Text] [Related]
42. Electroreceptor model of weakly electric fish Gnathonemus petersii: II. Cellular origin of inverse waveform tuning. Shuai J; Kashimori Y; Hoshino O; Kambara T; Emde G Biophys J; 1999 Jun; 76(6):3012-25. PubMed ID: 10354427 [TBL] [Abstract][Full Text] [Related]
43. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia. Ramcharitar JU; Tan EW; Fortune ES J Neurophysiol; 2006 Nov; 96(5):2319-26. PubMed ID: 16790600 [TBL] [Abstract][Full Text] [Related]
44. Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish. Dunlap KD; DiBenedictis BT; Banever SR J Exp Biol; 2010 Jul; 213(Pt 13):2234-42. PubMed ID: 20543122 [TBL] [Abstract][Full Text] [Related]
45. Influence of temperature and reproductive state upon the jamming avoidance response in the pulse-type electric fish Brachyhypopomus pinnicaudatus. Lorenzo D; Macadar O J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):85-94. PubMed ID: 15688242 [TBL] [Abstract][Full Text] [Related]
46. Plasticity of feedback inputs in the apteronotid electrosensory system. Bastian J J Exp Biol; 1999 May; 202(Pt 10):1327-37. PubMed ID: 10210673 [TBL] [Abstract][Full Text] [Related]
47. Electrosensory systems in the mormyrid fish, Gnathonemus petersii : special emphasis on the fast conducting pathway. Szabo T; Enger PS; Libouban S J Physiol (Paris); 1979; 75(4):409-20. PubMed ID: 512973 [TBL] [Abstract][Full Text] [Related]
48. Electric organ discharge and electrosensory reafference in skates. New JG Biol Bull; 1994 Aug; 187(1):64-75. PubMed ID: 7918797 [TBL] [Abstract][Full Text] [Related]
49. Electrolocation in the presence of jamming signals: behavior. Bastian J J Comp Physiol A; 1987 Nov; 161(6):811-24. PubMed ID: 3430413 [TBL] [Abstract][Full Text] [Related]
50. Coding of time-varying electric field amplitude modulations in a wave-type electric fish. Wessel R; Koch C; Gabbiani F J Neurophysiol; 1996 Jun; 75(6):2280-93. PubMed ID: 8793741 [TBL] [Abstract][Full Text] [Related]
51. Postsynaptic potentials in pacemaker cells: a correlation of behavior in command cells of an electric fish. Feng AS; Bullock TH J Neurobiol; 1978 Jul; 9(4):255-66. PubMed ID: 681925 [TBL] [Abstract][Full Text] [Related]
52. Co-adaptation of electric organ discharges and chirps in South American ghost knifefishes (Apteronotidae). Petzold JM; Marsat G; Smith GT J Physiol Paris; 2016 Oct; 110(3 Pt B):200-215. PubMed ID: 27989653 [TBL] [Abstract][Full Text] [Related]
53. Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity. Bell CC; Grant K J Neurophysiol; 1992 Sep; 68(3):859-75. PubMed ID: 1432053 [TBL] [Abstract][Full Text] [Related]
54. Single unit activity in the mesencephalon of Sternarchus. Schlegel P J Physiol (Paris); 1979; 75(4):421-8. PubMed ID: 512974 [TBL] [Abstract][Full Text] [Related]
55. Behavioral actions of androgens and androgen receptor expression in the electrocommunication system of an electric fish, Eigenmannia virescens. Dunlap KD; Zakon HH Horm Behav; 1998 Aug; 34(1):30-8. PubMed ID: 9735226 [TBL] [Abstract][Full Text] [Related]
56. A JAR of Chirps: The Gymnotiform Chirp Can Function as Both a Communication Signal and a Jamming Avoidance Response. Field CE; Petersen TA; Alves-Gomes JA; Braun CB Front Integr Neurosci; 2019; 13():55. PubMed ID: 31632247 [TBL] [Abstract][Full Text] [Related]
57. The electric sense of weakly electric fish. Heiligenberg W; Bastian J Annu Rev Physiol; 1984; 46():561-83. PubMed ID: 6324664 [TBL] [Abstract][Full Text] [Related]
58. NADPH-diaphorase activity and nitric oxide synthase-like immunoreactivity colocalize in the electromotor system of four species of gymnotiform fish. Smith GT; Unguez GA; Reinauer RM Brain Behav Evol; 2001; 58(3):122-36. PubMed ID: 11910170 [TBL] [Abstract][Full Text] [Related]
59. Frequency-dependent PSP depression contributes to low-pass temporal filtering in Eigenmannia. Rose GJ; Fortune ES J Neurosci; 1999 Sep; 19(17):7629-39. PubMed ID: 10460268 [TBL] [Abstract][Full Text] [Related]
60. A microprocessor system for the digital synthesis of pulsed and continuous discharges of electric fish (or animal vocalizations). Kramer B; Weymann D Behav Brain Res; 1987 Feb; 23(2):167-74. PubMed ID: 3566909 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]