These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9320463)

  • 61. Chloride channels in apical membrane patches of stellate cells of Malpighian tubules of Aedes aegypti.
    O'Connor KR; Beyenbach KW
    J Exp Biol; 2001 Jan; 204(Pt 2):367-78. PubMed ID: 11136622
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Voltages and resistances of the anterior Malpighian tubule of
    Beyenbach KW
    J Exp Biol; 2019 May; 222(Pt 10):. PubMed ID: 31043456
    [TBL] [Abstract][Full Text] [Related]  

  • 63. NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow fever mosquito Aedes aegypti.
    Piermarini PM; Weihrauch D; Meyer H; Huss M; Beyenbach KW
    Am J Physiol Renal Physiol; 2009 Apr; 296(4):F730-50. PubMed ID: 19193723
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Vacuolar-type proton pumps in insect epithelia.
    Wieczorek H; Beyenbach KW; Huss M; Vitavska O
    J Exp Biol; 2009 Jun; 212(Pt 11):1611-9. PubMed ID: 19448071
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hormone-controlled cAMP-mediated fluid secretion in yellow-fever mosquito.
    Petzel DH; Berg MM; Beyenbach KW
    Am J Physiol; 1987 Nov; 253(5 Pt 2):R701-11. PubMed ID: 2825546
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fluid secretion in Rhodnius upper malpighian tubules (UMT): water osmotic permeabilities and morphometric studies.
    Hernández CS; Gutiérrez AM; Vargas-Janzen A; Noria F; González E; Ruiz V; Whittembury G
    J Membr Biol; 2001 Dec; 184(3):283-90. PubMed ID: 11891553
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pancreatic epithelium is permeable to sucrose and inulin across secretory cells.
    Mélèse T; Rothman SS
    Proc Natl Acad Sci U S A; 1983 Aug; 80(15):4870-4. PubMed ID: 6348774
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanisms of calcium sequestration by isolated Malpighian tubules of the house cricket Acheta domesticus.
    Browne A; O'Donnell MJ
    Arch Insect Biochem Physiol; 2018 Jan; 97(1):. PubMed ID: 29159836
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Preliminary isolation of mosquito natriuretic factor.
    Petzel DH; Hagedorn HH; Beyenbach KW
    Am J Physiol; 1985 Oct; 249(4 Pt 2):R379-86. PubMed ID: 2413779
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Protein kinase A-dependent and -independent activation of the V-ATPase in Malpighian tubules of Aedes aegypti.
    Tiburcy F; Beyenbach KW; Wieczorek H
    J Exp Biol; 2013 Mar; 216(Pt 5):881-91. PubMed ID: 23197085
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Role of paracellular pathway in nonelectrolyte permeation across rat colon epithelium enhanced by sodium caprate and sodium caprylate.
    Sawada T; Ogawa T; Tomita M; Hayashi M; Awazu S
    Pharm Res; 1991 Nov; 8(11):1365-71. PubMed ID: 1798671
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Isolation and characterization of a leucokinin-like peptide of Drosophila melanogaster.
    Terhzaz S; O'Connell FC; Pollock VP; Kean L; Davies SA; Veenstra JA; Dow JA
    J Exp Biol; 1999 Dec; 202(Pt 24):3667-76. PubMed ID: 10574744
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transepithelial and intracellular potentials in isolated Malpighian tubules of tenebrionid beetle.
    Nicolson SW; Isaacson LC
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F645-53. PubMed ID: 3031999
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Intracellular and luminal pH measurements of Malpighian tubules of the mosquito Aedes aegypti: the effects of cAMP.
    Petzel DH; Pirotte PT; Van Kerkhove E
    J Insect Physiol; 1999 Nov; 45(11):973-982. PubMed ID: 12770272
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Transepithelial transport of salicylate by the Malpighian tubules of insects from different orders.
    Ruiz-Sanchez E; Van Walderveen MC; Livingston A; O'Donnell MJ
    J Insect Physiol; 2007 Oct; 53(10):1034-45. PubMed ID: 17640663
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Paracellular calcium transport across Caco-2 and HT29 cell monolayers.
    Blais A; Aymard P; Lacour B
    Pflugers Arch; 1997 Jul; 434(3):300-5. PubMed ID: 9178630
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Malpighian Tubules as Novel Targets for Mosquito Control.
    Piermarini PM; Esquivel CJ; Denton JS
    Int J Environ Res Public Health; 2017 Jan; 14(2):. PubMed ID: 28125032
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Actions of external hypertonic urea, ADH, and theophylline on transcellular and extracellular solute permeabilities in frog skin.
    Mandel LJ
    J Gen Physiol; 1975 May; 65(5):599-615. PubMed ID: 1080796
    [TBL] [Abstract][Full Text] [Related]  

  • 79. CONCEALED TRANSEPITHELIAL POTENTIALS AND CURRENT RECTIFICATION IN TSETSE FLY MALPIGHIAN TUBULES.
    Isaacson L; Nicolson S
    J Exp Biol; 1994 Jan; 186(1):199-213. PubMed ID: 9317633
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Unique electrophysiological effects of dinitrophenol in Malpighian tubules.
    Pannabecker TL; Aneshansley DJ; Beyenbach KW
    Am J Physiol; 1992 Sep; 263(3 Pt 2):R609-14. PubMed ID: 1415649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.