These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 932062)

  • 1. Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves.
    Panjabi MM; Brand RA; White AA
    J Bone Joint Surg Am; 1976 Jul; 58(5):642-52. PubMed ID: 932062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental determination of spinal motion segment behavior.
    Panjabi MM
    Orthop Clin North Am; 1977 Jan; 8(1):169-80. PubMed ID: 857224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomechanical study of the ligamentous stability of the thoracic spine in man.
    Panjabi MM; Hausfeld JN; White AA
    Acta Orthop Scand; 1981 Jun; 52(3):315-26. PubMed ID: 7282325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves.
    Panjabi MM; Crisco JJ; Vasavada A; Oda T; Cholewicki J; Nibu K; Shin E
    Spine (Phila Pa 1976); 2001 Dec; 26(24):2692-700. PubMed ID: 11740357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thoracic spine centers of rotation in the sagittal plane.
    Panjabi MM; Krag MH; Dimnet JC; Walter SD; Brand RA
    J Orthop Res; 1984; 1(4):387-94. PubMed ID: 6491788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments.
    Busscher I; van Dieën JH; Kingma I; van der Veen AJ; Verkerke GJ; Veldhuizen AG
    Spine (Phila Pa 1976); 2009 Dec; 34(26):2858-64. PubMed ID: 20010393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional load-displacement curves due to forces on the cervical spine.
    Panjabi MM; Summers DJ; Pelker RR; Videman T; Friedlaender GE; Southwick WO
    J Orthop Res; 1986; 4(2):152-61. PubMed ID: 3712124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of preload on load displacement curves of the lumbar spine.
    Panjabi MM; Krag MH; White AA; Southwick WO
    Orthop Clin North Am; 1977 Jan; 8(1):181-92. PubMed ID: 857225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal kinematics of the neck: the interplay between the cervical and thoracic spines.
    Tsang SM; Szeto GP; Lee RY
    Man Ther; 2013 Oct; 18(5):431-7. PubMed ID: 23632368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posture affects motion coupling patterns of the upper cervical spine.
    Panjabi MM; Oda T; Crisco JJ; Dvorak J; Grob D
    J Orthop Res; 1993 Jul; 11(4):525-36. PubMed ID: 8340825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional lumbar spine vertebral motion during running using indwelling bone pins.
    MacWilliams BA; Rozumalski A; Swanson AN; Wervey R; Dykes DC; Novacheck TF; Schwartz MH
    Spine (Phila Pa 1976); 2014 Dec; 39(26):E1560-5. PubMed ID: 25341976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematics of the thoracic T10-T11 motion segment: locus of instantaneous axes of rotation in flexion and extension.
    Qiu TX; Teo EC; Lee KK; Ng HW; Yang K
    J Spinal Disord Tech; 2004 Apr; 17(2):140-6. PubMed ID: 15260098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of creep and recovery on the in vitro biomechanical characteristics of human multi-level thoracolumbar spinal segments.
    Busscher I; van Dieën JH; van der Veen AJ; Kingma I; Meijer GJ; Verkerke GJ; Veldhuizen AG
    Clin Biomech (Bristol, Avon); 2011 Jun; 26(5):438-44. PubMed ID: 21251737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage.
    Perry TG; Mageswaran P; Colbrunn RW; Bonner TF; Francis T; McLain RF
    J Neurosurg Spine; 2014 Sep; 21(3):481-8. PubMed ID: 24949903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The six degrees of freedom motion of the human head, spine, and pelvis in a frontal impact.
    Lopez-Valdes FJ; Riley PO; Lessley DJ; Arbogast KB; Seacrist T; Balasubramanian S; Maltese M; Kent R
    Traffic Inj Prev; 2014; 15(3):294-301. PubMed ID: 24372502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of three-dimensional lumbar spine vertebral motion during gait with use of indwelling bone pins.
    MacWilliams BA; Rozumalski A; Swanson AN; Wervey RA; Dykes DC; Novacheck TF; Schwartz MH
    J Bone Joint Surg Am; 2013 Dec; 95(23):e1841-8. PubMed ID: 24306707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posteroanterior stiffness predicts sagittal plane midthoracic range of motion and three-dimensional flexibility in cadaveric spine segments.
    Sran MM; Khan KM; Zhu Q; Oxland TR
    Clin Biomech (Bristol, Avon); 2005 Oct; 20(8):806-12. PubMed ID: 15993525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional mechanical properties of the thoracolumbar junction.
    Oxland TR; Lin RM; Panjabi MM
    J Orthop Res; 1992 Jul; 10(4):573-80. PubMed ID: 1613631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematics of the thoracic spine in trunk rotation: in vivo 3-dimensional analysis.
    Fujimori T; Iwasaki M; Nagamoto Y; Ishii T; Kashii M; Murase T; Sugiura T; Matsuo Y; Sugamoto K; Yoshikawa H
    Spine (Phila Pa 1976); 2012 Oct; 37(21):E1318-28. PubMed ID: 22772578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twelfth thoracic-first lumbar vertebral mechanical stability of fractures after Harrington-rod instrumentation.
    Purcell GA; Markolf KL; Dawson EG
    J Bone Joint Surg Am; 1981 Jan; 63(1):71-8. PubMed ID: 7451528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.