BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9321644)

  • 1. Replication of DNA templates containing 5-formyluracil, a major oxidative lesion of thymine in DNA.
    Zhang QM; Sugiyama H; Miyabe I; Matsuda S; Saito I; Yonei S
    Nucleic Acids Res; 1997 Oct; 25(20):3969-73. PubMed ID: 9321644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of thymine to 5-formyluracil in DNA promotes misincorporation of dGMP and subsequent elongation of a mismatched primer terminus by DNA polymerase.
    Masaoka A; Terato H; Kobayashi M; Ohyama Y; Ide H
    J Biol Chem; 2001 May; 276(19):16501-10. PubMed ID: 11278425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication in vitro and cleavage by restriction endonuclease of 5-formyluracil- and 5-hydroxymethyluracil-containing oligonucleotides.
    Zhang QM; Sugiyama H; Miyabe I; Matsuda S; Kino K; Saito I; Yonei S
    Int J Radiat Biol; 1999 Jan; 75(1):59-65. PubMed ID: 9972792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Template length, sequence context, and 3'-5' exonuclease activity modulate replicative bypass of thymine glycol lesions in vitro.
    Clark JM; Beardsley GP
    Biochemistry; 1989 Jan; 28(2):775-9. PubMed ID: 2713344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenic effects of 5-formyluracil on a plasmid vector during replication in Escherichia coli.
    Miyabe I; Zhang QM; Sugiyama H; Kino K; Yonei S
    Int J Radiat Biol; 2001 Jan; 77(1):53-8. PubMed ID: 11213350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of thymine to 5-formyluracil in DNA: mechanisms of formation, structural implications, and base excision by human cell free extracts.
    Bjelland S; Eide L; Time RW; Stote R; Eftedal I; Volden G; Seeberg E
    Biochemistry; 1995 Nov; 34(45):14758-64. PubMed ID: 7578084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-Formyluracil-induced perturbations of DNA function.
    Rogstad DK; Heo J; Vaidehi N; Goddard WA; Burdzy A; Sowers LC
    Biochemistry; 2004 May; 43(19):5688-97. PubMed ID: 15134443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of the mutagenic DNA oxidation product, 5-formyluracil.
    Liu P; Burdzy A; Sowers LC
    DNA Repair (Amst); 2003 Feb; 2(2):199-210. PubMed ID: 12531390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of repair enzymes for 5-formyluracil in DNA. Nth, Nei, and MutM proteins of Escherichia coli.
    Zhang QM; Miyabe I; Matsumoto Y; Kino K; Sugiyama H; Yonei S
    J Biol Chem; 2000 Nov; 275(45):35471-7. PubMed ID: 10956660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic repair of 5-formyluracil. II. Mismatch formation between 5-formyluracil and guanine during dna replication and its recognition by two proteins involved in base excision repair (AlkA) and mismatch repair (MutS).
    Terato H; Masaoka A; Kobayashi M; Fukushima S; Ohyama Y; Yoshida M; Ide H
    J Biol Chem; 1999 Aug; 274(35):25144-50. PubMed ID: 10455196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major oxidative products of cytosine, 5-hydroxycytosine and 5-hydroxyuracil, exhibit sequence context-dependent mispairing in vitro.
    Purmal AA; Kow YW; Wallace SS
    Nucleic Acids Res; 1994 Jan; 22(1):72-8. PubMed ID: 8127657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a template-located 2',2'-difluorodeoxycytidine on the kinetics and fidelity of base insertion by Klenow (3'-->5'exonuclease-) fragment.
    Schy WE; Hertel LW; Kroin JS; Bloom LB; Goodman MF; Richardson FC
    Cancer Res; 1993 Oct; 53(19):4582-7. PubMed ID: 8402631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of 5-formyluracil DNA glycosylase activity of human hNTH1 protein.
    Miyabe I; Zhang QM; Kino K; Sugiyama H; Takao M; Yasui A; Yonei S
    Nucleic Acids Res; 2002 Aug; 30(15):3443-8. PubMed ID: 12140329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication of DNA templates containing the alpha-anomer of deoxyadenosine, a major adenine lesion produced by hydroxyl radicals.
    Ide H; Yamaoka T; Kimura Y
    Biochemistry; 1994 Jun; 33(23):7127-33. PubMed ID: 8003479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic analysis of nucleotides incorporated opposite oxidized thymine bases on template DNA.
    Miyashita T; Ono A; Izuta S
    Nucleic Acids Res Suppl; 2002; (2):255-6. PubMed ID: 12903201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic processing of uracil glycol, a major oxidative product of DNA cytosine.
    Purmal AA; Lampman GW; Bond JP; Hatahet Z; Wallace SS
    J Biol Chem; 1998 Apr; 273(16):10026-35. PubMed ID: 9545349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 3'-5' proofreading exonuclease of archaeal family-B DNA polymerase hinders the copying of template strand deaminated bases.
    Russell HJ; Richardson TT; Emptage K; Connolly BA
    Nucleic Acids Res; 2009 Dec; 37(22):7603-11. PubMed ID: 19783818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translesional synthesis on DNA templates containing the 2'-deoxyribonolactone lesion.
    Berthet N; Roupioz Y; Constant JF; Kotera M; Lhomme J
    Nucleic Acids Res; 2001 Jul; 29(13):2725-32. PubMed ID: 11433017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA replication fidelity with 8-oxodeoxyguanosine triphosphate.
    Pavlov YI; Minnick DT; Izuta S; Kunkel TA
    Biochemistry; 1994 Apr; 33(15):4695-701. PubMed ID: 8161527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I.
    Carver TE; Millar DP
    Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.