These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9321668)

  • 1. Factors influencing the extent and selectivity of alkylation within triplexes by reactive G/A motif oligonucleotides.
    Lampe JN; Kutyavin IV; Rhinehart R; Reed MW; Meyer RB; Gamper HB
    Nucleic Acids Res; 1997 Oct; 25(20):4123-31. PubMed ID: 9321668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Cm/T, G/A, and G/T triplex stability by conjugate groups in the presence and absence of KCl.
    Gamper HB; Kutyavin IV; Rhinehart RL; Lokhov SG; Reed MW; Meyer RB
    Biochemistry; 1997 Dec; 36(48):14816-26. PubMed ID: 9398203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-specific targeting and covalent modification of human genomic DNA.
    Belousov ES; Afonina IA; Podyminogin MA; Gamper HB; Reed MW; Wydro RM; Meyer RB
    Nucleic Acids Res; 1997 Sep; 25(17):3440-4. PubMed ID: 9254701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-specific covalent modification of DNA by cross-linking oligonucleotides. Catalysis by RecA and implication for the mechanism of synaptic joint formation.
    Podyminogin MA; Meyer RB; Gamper HB
    Biochemistry; 1995 Oct; 34(40):13098-108. PubMed ID: 7548070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minor groove DNA alkylation directed by major groove triplex forming oligodeoxyribonucleotides.
    Lukhtanov EA; Mills AG; Kutyavin IV; Gorn VV; Reed MW; Meyer RB
    Nucleic Acids Res; 1997 Dec; 25(24):5077-84. PubMed ID: 9396819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple-helix formation by oligonucleotides containing the three bases thymine, cytosine, and guanine.
    Giovannangéli C; Rougée M; Garestier T; Thuong NT; Hélène C
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8631-5. PubMed ID: 1528873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RecA-catalyzed, sequence-specific alkylation of DNA by cross-linking oligonucleotides. Effects of length and nonhomologous base substitutions.
    Podyminogin MA; Meyer RB; Gamper HB
    Biochemistry; 1996 Jun; 35(22):7267-74. PubMed ID: 8679556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient DNA strand displacement by a W-shaped nucleoside analogue (WNA-βT) containing an ortho-methyl-substituted phenyl ring.
    Aoki E; Taniguchi Y; Wada Y; Sasaki S
    Chembiochem; 2012 May; 13(8):1152-60. PubMed ID: 22549913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triplex targeting of a native gene in permeabilized intact cells: covalent modification of the gene for the chemokine receptor CCR5.
    Belousov ES; Afonina IA; Kutyavin IV; Gall AA; Reed MW; Gamper HB; Wydro RM; Meyer RB
    Nucleic Acids Res; 1998 Mar; 26(5):1324-8. PubMed ID: 9469844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-linking to an interrupted polypurine sequence with a platinum-modified triplex-forming oligonucleotide.
    Campbell MA; Miller PS
    J Biol Inorg Chem; 2009 Aug; 14(6):873-81. PubMed ID: 19350290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and evaluation of oligonucleotides incorporating novel artificial nucleobases for the selective formation of non-natural type triplexes.
    Nakashima S; Matsuura N; Nagatsugi F; Maeda M; Sasaki S
    Nucleic Acids Symp Ser; 1997; (37):33-4. PubMed ID: 9585985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triplex formation by oligonucleotides containing novel deoxycytidine derivatives.
    Huang CY; Bi G; Miller PS
    Nucleic Acids Res; 1996 Jul; 24(13):2606-13. PubMed ID: 8692703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of base pair inversions in duplex by chimeric (alpha,beta) triplex-forming oligonucleotides.
    Timofeev EN; Goryaeva BV; Florentiev VL
    J Biomol Struct Dyn; 2006 Oct; 24(2):183-8. PubMed ID: 16928141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of the novel cross-linking reagents triggered by the triple helix formation.
    Nagatsugi F; Usui D; Kawasaki T; Maeda M; Sasaki S
    Nucleic Acids Symp Ser; 2000; (44):39-40. PubMed ID: 12903257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coralyne has a preference for intercalation between TA.T triples in intramolecular DNA triple helices.
    Moraru-Allen AA; Cassidy S; Asensio Alvarez JL; Fox KR; Brown T; Lane AN
    Nucleic Acids Res; 1997 May; 25(10):1890-6. PubMed ID: 9115354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (A,G)-oligonucleotides form extraordinary stable triple helices with a critical R.Y sequence of the murine c-Ki-ras promoter and inhibit transcription in transfected NIH 3T3 cells.
    Alunni-Fabbroni M; Pirulli D; Manzini G; Xodo LE
    Biochemistry; 1996 Dec; 35(50):16361-9. PubMed ID: 8973212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promotion of duplex and triplex DNA formation by polycation comb-type copolymers.
    Torigoe H; Maruyama A
    Methods Mol Med; 2001; 65():209-24. PubMed ID: 21318757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorambucil-adducts in DNA analyzed at the oligonucleotide level using HPLC-ESI MS.
    Mohamed D; Mowaka S; Thomale J; Linscheid MW
    Chem Res Toxicol; 2009 Aug; 22(8):1435-46. PubMed ID: 19621941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.