These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9322023)

  • 21. Enumerating and ranking discrete motifs.
    Nevill-Manning CG; Sethi KS; Wu TD; Brutlag DL
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():202-9. PubMed ID: 9322037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of protein structural classes.
    Chou KC; Zhang CT
    Crit Rev Biochem Mol Biol; 1995; 30(4):275-349. PubMed ID: 7587280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel two-stage hybrid neural discriminant model for predicting proteins structural classes.
    Jahandideh S; Abdolmaleki P; Jahandideh M; Asadabadi EB
    Biophys Chem; 2007 Jun; 128(1):87-93. PubMed ID: 17467878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection.
    Damoulas T; Girolami MA
    Bioinformatics; 2008 May; 24(10):1264-70. PubMed ID: 18378524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate prediction of solvent accessibility using neural networks-based regression.
    Adamczak R; Porollo A; Meller J
    Proteins; 2004 Sep; 56(4):753-67. PubMed ID: 15281128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A self-consistent knowledge-based approach to protein design.
    Rossi A; Micheletti C; Seno F; Maritan A
    Biophys J; 2001 Jan; 80(1):480-90. PubMed ID: 11159418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple contact network is a key determinant to protein folding rates.
    Gromiha MM
    J Chem Inf Model; 2009 Apr; 49(4):1130-5. PubMed ID: 19338373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A key driving force in determination of protein structural classes.
    Chou KC
    Biochem Biophys Res Commun; 1999 Oct; 264(1):216-24. PubMed ID: 10527868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hunting for "key residues" in the modeling of globular protein folding: an artificial neural network-based approach.
    Sacile R; Ruggiero C
    IEEE Trans Nanobioscience; 2002 Jun; 1(2):85-91. PubMed ID: 16689212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.
    Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J
    J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic structure classification of small proteins using random forest.
    Jain P; Hirst JD
    BMC Bioinformatics; 2010 Jul; 11():364. PubMed ID: 20594334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial proteins fold faster than eukaryotic proteins with simple folding kinetics.
    Galzitskaya OV; Bogatyreva NS; Glyakina AV
    Biochemistry (Mosc); 2011 Feb; 76(2):225-35. PubMed ID: 21568856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-class protein fold classification using a new ensemble machine learning approach.
    Tan AC; Gilbert D; Deville Y
    Genome Inform; 2003; 14():206-17. PubMed ID: 15706535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FOLD-RATE: prediction of protein folding rates from amino acid sequence.
    Gromiha MM; Thangakani AM; Selvaraj S
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W70-4. PubMed ID: 16845101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel model-based on FCM-LM algorithm for prediction of protein folding rate.
    Liu L; Ma M; Cui J
    J Bioinform Comput Biol; 2017 Aug; 15(4):1750012. PubMed ID: 28513252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor.
    Xiao X; Shao SH; Huang ZD; Chou KC
    J Comput Chem; 2006 Mar; 27(4):478-82. PubMed ID: 16429410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SCOP, Structural Classification of Proteins database: applications to evaluation of the effectiveness of sequence alignment methods and statistics of protein structural data.
    Hubbard TJ; Ailey B; Brenner SE; Murzin AG; Chothia C
    Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 1):1147-54. PubMed ID: 10089491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis and prediction of protein folding rates using quadratic response surface models.
    Huang LT; Gromiha MM
    J Comput Chem; 2008 Jul; 29(10):1675-83. PubMed ID: 18351617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Refinement of the long-range order parameter in predicting folding rates of two-state proteins.
    Harihar B; Selvaraj S
    Biopolymers; 2009 Nov; 91(11):928-35. PubMed ID: 19603493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural classification of proteins using texture descriptors extracted from the cellular automata image.
    Kavianpour H; Vasighi M
    Amino Acids; 2017 Feb; 49(2):261-271. PubMed ID: 27778167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.