These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9322035)

  • 1. A fast heuristic algorithm for a probe mapping problem.
    Mumey B
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():191-7. PubMed ID: 9322035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consensus genetic maps as median orders from inconsistent sources.
    Jackson BN; Schnable PS; Aluru S
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(2):161-71. PubMed ID: 18451426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of low-frequency chimeric yeast artificial chromosome libraries from human chromosomes 16 and 21 by fluorescence in situ hybridization and quantitative image analysis.
    Marrone BL; Campbell EW; Anzick SL; Shera K; Campbell M; Yoshida TM; McCormick MK; Deaven L
    Genomics; 1994 May; 21(1):202-7. PubMed ID: 8088788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescence in situ hybridization map of human chromosome 21 consisting of 30 genetic and physical markers on the chromosome: localization of 137 additional YAC and cosmid clones with respect to this map.
    Gingrich JC; Shadravan F; Lowry SR
    Genomics; 1993 Jul; 17(1):98-105. PubMed ID: 8406476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of a human chromosome 21 enriched YAC sub-library using a chromosome-specific composite probe.
    Ross MT; Nizetíc D; Nguyen C; Knights C; Vatcheva R; Burden N; Douglas C; Zehetner G; Ward DC; Baldini A
    Nat Genet; 1992 Jul; 1(4):284-90. PubMed ID: 1302025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human chromosome 19p: a fluorescence in situ hybridization map with genomic distance estimates for 79 intervals spanning 20 Mb.
    Brandriff BF; Gordon LA; Fertitta A; Olsen AS; Christensen M; Ashworth LK; Nelson DO; Carrano AV; Mohrenweiser HW
    Genomics; 1994 Oct; 23(3):582-91. PubMed ID: 7851886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of simulated annealing in chromosome reconstruction experiments based on binary scoring.
    Cuticchia AJ; Arnold J; Timberlake WE
    Genetics; 1992 Oct; 132(2):591-601. PubMed ID: 1427046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of the chromosome sorting technique to the human genome analysis].
    Minoshima S; Shimizu N
    Nihon Rinsho; 1993 Sep; 51(9):2234-9. PubMed ID: 8411695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithms and software tools for ordering clone libraries: application to the mapping of the genome of Schizosaccharomyces pombe.
    Mott R; Grigoriev A; Maier E; Hoheisel J; Lehrach H
    Nucleic Acids Res; 1993 Apr; 21(8):1965-74. PubMed ID: 8493107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An algorithm to detect chimeric clones and random noise in genomic mapping.
    Grigoriev A; Mott R; Lehrach H
    Genomics; 1994 Jul; 22(2):482-6. PubMed ID: 7806241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A branch-and-cut approach to physical mapping of chromosomes by unique end-probes.
    Christof T; Jünger M; Kececioglu J; Mutzel P; Reinelt G
    J Comput Biol; 1997; 4(4):433-47. PubMed ID: 9385538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical mapping by STS hybridization: algorithmic strategies and the challenge of software evaluation.
    Greenberg DS; Istrail S
    J Comput Biol; 1995; 2(2):219-73. PubMed ID: 7497128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiautomated DNA probe mapping using digital imaging microscopy: I. System development.
    Mascio LN; Verbeek PW; Sudar D; Kuo WL; Gray JW
    Cytometry; 1995 Jan; 19(1):51-9. PubMed ID: 7705185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and mapping of human T-cell protein tyrosine phosphatase sequences: localization of genes and pseudogenes discriminated using fluorescence hybridization with genomic versus cDNA probes.
    Johnson CV; Cool DE; Glaccum MB; Green N; Fischer EH; Bruskin A; Hill DE; Lawrence JB
    Genomics; 1993 Jun; 16(3):619-29. PubMed ID: 8325634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual mapping by fiber-FISH.
    Heiskanen M; Hellsten E; Kallioniemi OP; Mäkelä TP; Alitalo K; Peltonen L; Palotie A
    Genomics; 1995 Nov; 30(1):31-6. PubMed ID: 8595900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical mapping of chromosomes using unique probes.
    Alizadeh F; Karp RM; Weisser DK; Zweig G
    J Comput Biol; 1995; 2(2):159-84. PubMed ID: 7497125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the design of genome mapping experiments using short synthetic oligonucleotides.
    Fu YX; Timberlake WE; Arnold J
    Biometrics; 1992 Jun; 48(2):337-59. PubMed ID: 1637965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FISH probes for mouse chromosome identification.
    Shi YP; Mohapatra G; Miller J; Hanahan D; Lander E; Gold P; Pinkel D; Gray J
    Genomics; 1997 Oct; 45(1):42-7. PubMed ID: 9339359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of clone-ordering algorithms used in physical mapping.
    Platt DM; Dix TI
    Genomics; 1997 Mar; 40(3):490-2. PubMed ID: 9073518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the accurate construction of consensus genetic maps.
    Wu Y; Close TJ; Lonardi S
    Comput Syst Bioinformatics Conf; 2008; 7():285-96. PubMed ID: 19642288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.