BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9322374)

  • 1. The influence of pH and aeration rate on the fermentation of D-xylose by Candida shehatae.
    Sánchez S; Bravo V; Castro E; Moya AJ; Camacho F
    Enzyme Microb Technol; 1997 Oct; 21(5):355-60. PubMed ID: 9322374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylitol production from high xylose concentration: evaluation of the fermentation in bioreactor under different stirring rates.
    Mussatto SI; Roberto IC
    J Appl Microbiol; 2003; 95(2):331-7. PubMed ID: 12859766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of initial pH on biological synthesis of xylitol using xylose-rich hydrolysate.
    Morita TA; Silva SS; Felipe MG
    Appl Biochem Biotechnol; 2000; 84-86():751-9. PubMed ID: 10849833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production.
    Yuvadetkun P; Leksawasdi N; Boonmee M
    Prep Biochem Biotechnol; 2017 Mar; 47(3):268-275. PubMed ID: 27552485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain of Candida shehatae ATCC 22984.
    Li Y; Park JY; Shiroma R; Ike M; Tokuyasu K
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1781-90. PubMed ID: 22328261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of controlled oxygen limitation on Candida shehatae physiology for ethanol production from xylose and glucose.
    Fromanger R; Guillouet SE; Uribelarrea JL; Molina-Jouve C; Cameleyre X
    J Ind Microbiol Biotechnol; 2010 May; 37(5):437-45. PubMed ID: 20066468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous alcoholic fermentation of glucose/xylose mixtures by co-immobilized Saccharomyces cerevisiae and Candida shehatae.
    Lebeau T; Jouenne T; Junter GA
    Appl Microbiol Biotechnol; 1998 Sep; 50(3):309-13. PubMed ID: 9802215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen uptake rate in production of xylitol by Candida guilliermondii with different aeration rates and initial xylose concentrations.
    Gimenes MA; Carlos LC; Faria LF; Pereira N
    Appl Biochem Biotechnol; 2002; 98-100():1049-59. PubMed ID: 12018229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of xylitol production by the yeast Candida mogii.
    Tochampa W; Sirisansaneeyakul S; Vanichsriratana W; Srinophakun P; Bakker HH; Chisti Y
    Bioprocess Biosyst Eng; 2005 Dec; 28(3):175-83. PubMed ID: 16215727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nitrogen sources on oxidoreductive enzymes and ethanol production during D-xylose fermentation by Candida shehatae.
    Palnitkar S; Lachke A
    Can J Microbiol; 1992 Mar; 38(3):258-60. PubMed ID: 1393828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model compound studies: influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis.
    Walthers T; Hensirisak P; Agblevor FA
    Appl Biochem Biotechnol; 2001; 91-93():423-35. PubMed ID: 11963871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch xylitol production by Candida guilliermondii FTI 20037 from sugarcane bagasse hemicellulosic hydrolyzate at controlled pH values.
    Rodrigues RC; Felipe MG; Roberto IC; Vitolo M
    Bioprocess Biosyst Eng; 2003 Dec; 26(2):103-7. PubMed ID: 14624353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp].
    Fang XN; Huang W; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):295-8. PubMed ID: 15969126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Batch xylitol production from wheat straw hemicellulosic hydrolysate using Candida guilliermondii in a stirred tank reactor.
    Canilha L; Almeida e Silva JB; Felipe MG; Carvalho W
    Biotechnol Lett; 2003 Nov; 25(21):1811-4. PubMed ID: 14677703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501.
    Abbi M; Kuhad RC; Singh A
    J Ind Microbiol; 1996 Jul; 17(1):20-3. PubMed ID: 8987687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis.
    Walther T; Hensirisak P; Agblevor FA
    Bioresour Technol; 2001 Feb; 76(3):213-20. PubMed ID: 11198172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of cell density on the production of xylitol from D-xylose by yeast.
    Cao NJ; Tang R; Gong CS; Chen LF
    Appl Biochem Biotechnol; 1994; 45-46():515-9. PubMed ID: 8010768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18.
    Zhang J; Geng A; Yao C; Lu Y; Li Q
    Bioresour Technol; 2012 Feb; 105():134-41. PubMed ID: 22196071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on xylose fermentation by Neurospora crassa].
    Zhang X; Zhu D; Wang D; Lin J; Qu Y; Yu S
    Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):466-72. PubMed ID: 16276921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.
    Tamburini E; Costa S; Marchetti MG; Pedrini P
    Biomolecules; 2015 Aug; 5(3):1979-89. PubMed ID: 26295411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.