These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 9322477)

  • 1. Postanesthetic vasoconstriction slows peripheral-to-core transfer of cutaneous heat, thereby isolating the core thermal compartment.
    Plattner O; Ikeda T; Sessler DI; Christensen R; Turakhia M
    Anesth Analg; 1997 Oct; 85(4):899-906. PubMed ID: 9322477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoregulatory vasoconstriction does not impede core warming during cutaneous heating.
    Clough D; Kurz A; Sessler DI; Christensen R; Xiong J
    Anesthesiology; 1996 Aug; 85(2):281-8. PubMed ID: 8712443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative pressure rewarming vs. forced air warming in hypothermic postanesthetic volunteers.
    Taguchi A; Arkilic CF; Ahluwalia A; Sessler DI; Kurz A
    Anesth Analg; 2001 Jan; 92(1):261-6. PubMed ID: 11133641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a circulating-water garment and forced-air warming on body heat content and core temperature.
    Taguchi A; Ratnaraj J; Kabon B; Sharma N; Lenhardt R; Sessler DI; Kurz A
    Anesthesiology; 2004 May; 100(5):1058-64. PubMed ID: 15114200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of nonshivering thermogenesis in anesthetized adult humans.
    Hynson JM; Sessler DI; Moayeri A; McGuire J
    Anesthesiology; 1993 Oct; 79(4):695-703. PubMed ID: 8214747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoregulatory vasoconstriction does not impede core warming during cutaneous heating.
    Christensen R; Clough D; Kurz A; Plattner O; Sessler DI; Xiong J
    Ann N Y Acad Sci; 1997 Mar; 813():827-34. PubMed ID: 9100975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistive heating is more effective than metallic-foil insulation in an experimental model of accidental hypothermia: A randomized controlled trial.
    Greif R; Rajek A; Laciny S; Bastanmehr H; Sessler DI
    Ann Emerg Med; 2000 Apr; 35(4):337-45. PubMed ID: 10736119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body.
    Bräuer A; English MJ; Lorenz N; Steinmetz N; Perl T; Braun U; Weyland W
    Acta Anaesthesiol Scand; 2003 Jan; 47(1):58-64. PubMed ID: 12492798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistive polymer versus forced-air warming: comparable heat transfer and core rewarming rates in volunteers.
    Kimberger O; Held C; Stadelmann K; Mayer N; Hunkeler C; Sessler DI; Kurz A
    Anesth Analg; 2008 Nov; 107(5):1621-6. PubMed ID: 18931221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The effect of convection warming during abdominal surgery on the early postoperative heat balance].
    Kaudasch G; Schempp P; Skierski P; Turner E
    Anaesthesist; 1996 Nov; 45(11):1075-81. PubMed ID: 9012303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of two methods for reducing postbypass afterdrop.
    Rajek A; Lenhardt R; Sessler DI; Brunner G; Haisjackl M; Kastner J; Laufer G
    Anesthesiology; 2000 Feb; 92(2):447-56. PubMed ID: 10691232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of thermoregulatory vasomotion and ambient temperature variation on the accuracy of core-temperature estimates by cutaneous liquid-crystal thermometers.
    Ikeda T; Sessler DI; Marder D; Xiong J
    Anesthesiology; 1997 Mar; 86(3):603-12. PubMed ID: 9066326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body.
    Bräuer A; English MJ; Steinmetz N; Lorenz N; Perl T; Braun U; Weyland W
    Acta Anaesthesiol Scand; 2002 Sep; 46(8):965-72. PubMed ID: 12190797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoregulatory vasoconstriction and perianesthetic heat transfer.
    Kurz A; Sessler DI; Christensen R; Clough D; Plattner O; Xiong J
    Acta Anaesthesiol Scand Suppl; 1996; 109():30-3. PubMed ID: 8901934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid core-to-peripheral tissue heat transfer during cutaneous cooling.
    Plattner O; Xiong J; Sessler DI; Schmied H; Christensen R; Turakhia M; Dechert M; Clough D
    Anesth Analg; 1996 May; 82(5):925-30. PubMed ID: 8610900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited heat transfer between thermal compartments during rewarming in vasoconstricted patients.
    Ereth MH; Lennon RL; Sessler DI
    Aviat Space Environ Med; 1992 Dec; 63(12):1065-9. PubMed ID: 1456917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat balance and distribution during the core-temperature plateau in anesthetized humans.
    Kurz A; Sessler DI; Christensen R; Dechert M
    Anesthesiology; 1995 Sep; 83(3):491-9. PubMed ID: 7661349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal duration and temperature of prewarming.
    Sessler DI; Schroeder M; Merrifield B; Matsukawa T; Cheng C
    Anesthesiology; 1995 Mar; 82(3):674-81. PubMed ID: 7879936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of forced-air warming on postbypass central and skin temperatures and shivering activity.
    Mort TC; Rintel TD; Altman F
    J Clin Anesth; 1996 Aug; 8(5):361-70. PubMed ID: 8832446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of preinduction warming on temperature and blood pressure during propofol/nitrous oxide anesthesia.
    Hynson JM; Sessler DI; Moayeri A; McGuire J; Schroeder M
    Anesthesiology; 1993 Aug; 79(2):219-28, discussion 21A-22A. PubMed ID: 8342834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.