BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9323037)

  • 1. Dehydroascorbate and dehydroascorbate reductase are phantom indicators of oxidative stress in plants.
    Morell S; Follmann H; De Tullio M; Häberlein I
    FEBS Lett; 1997 Sep; 414(3):567-70. PubMed ID: 9323037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues.
    Foyer CH; Mullineaux PM
    FEBS Lett; 1998 Apr; 425(3):528-9. PubMed ID: 9563527
    [No Abstract]   [Full Text] [Related]  

  • 3. A novel-dehydroascorbate reductase from spinach chloroplasts homologous to plant trypsin inhibitor.
    Trümper S; Follmann H; Häberlein I
    FEBS Lett; 1994 Sep; 352(2):159-62. PubMed ID: 7925967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydroascorbate reduction: the phantom remaining.
    Morell S; Follmann H; de Tullio M; Häberlein I
    FEBS Lett; 1998 Apr; 425(3):530-1. PubMed ID: 9563528
    [No Abstract]   [Full Text] [Related]  

  • 5. A complex containing both trypsin inhibitor and dehydroascorbate reductase activities isolated from mitochondria of etiolated mung bean (Vigna radiata L. (Wilczek) cv. Tainan no. 5) seedlings.
    Hou WC; Wang YT; Lin YH; Hsiao LJ; Chen TE; Wang CW; Dai H
    J Exp Bot; 2000 Apr; 51(345):713-9. PubMed ID: 10938863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism.
    Potters G; Horemans N; Bellone S; Caubergs RJ; Trost P; Guisez Y; Asard H
    Plant Physiol; 2004 Apr; 134(4):1479-87. PubMed ID: 15047900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin).
    Washburn MP; Wells WW
    Biochemistry; 1999 Jan; 38(1):268-74. PubMed ID: 9890907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascorbate system in plant development.
    Arrigoni O
    J Bioenerg Biomembr; 1994 Aug; 26(4):407-19. PubMed ID: 7844116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human thioredoxin reactivity-structure/function relationship.
    Jacquot JP; de Lamotte F; Fontecave M; Schürmann P; Decottignies P; Miginiac-Maslow M; Wollman E
    Biochem Biophys Res Commun; 1990 Dec; 173(3):1375-81. PubMed ID: 2176490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the reaction catalyzed by dehydroascorbate reductase from spinach chloroplasts.
    Shimaoka T; Miyake C; Yokota A
    Eur J Biochem; 2003 Mar; 270(5):921-8. PubMed ID: 12603325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Dcytb (Cybrd 1) expression and function by iron, dehydroascorbate and Hif-2α in cultured cells.
    Luo X; Hill M; Johnson A; Latunde-Dada GO
    Biochim Biophys Acta; 2014 Jan; 1840(1):106-12. PubMed ID: 23981688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii: identification and characterization of thioredoxins and ferredoxin-thioredoxin reductase components.
    Huppe HC; de Lamotte-Guéry F; Jacquot J-P ; Buchanan BB
    Planta; 1990; 180():341-51. PubMed ID: 11538175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the dehydroascorbic acid reductase and thioltransferase (Glutaredoxin) activities of bovine erythrocyte glutathione peroxidase.
    Washburn MP; Wells WW
    Biochem Biophys Res Commun; 1999 Apr; 257(2):567-71. PubMed ID: 10198252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Ascorbate Regeneration Via Dehydroascorbate Reductase Confers Tolerance to Photo-Oxidative Stress in Chlamydomonas reinhardtii.
    Lin ST; Chiou CW; Chu YL; Hsiao Y; Tseng YF; Chen YC; Chen HJ; Chang HY; Lee TM
    Plant Cell Physiol; 2016 Oct; 57(10):2104-2121. PubMed ID: 27440549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth.
    Gallie DR
    J Exp Bot; 2013 Jan; 64(2):433-43. PubMed ID: 23162122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic characterization and crystal structure analysis of Chlamydomonas reinhardtii dehydroascorbate reductase and their implications for oxidative stress.
    Chang HY; Lin ST; Ko TP; Wu SM; Lin TH; Chang YC; Huang KF; Lee TM
    Plant Physiol Biochem; 2017 Nov; 120():144-155. PubMed ID: 29028546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-redox protein interactions in the thioredoxin activation of chloroplast enzymes.
    Häberlein I; Würfel M; Follmann H
    Biochim Biophys Acta; 1992 Jun; 1121(3):293-6. PubMed ID: 1320937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dehydroascorbate reduction.
    Wells WW; Xu DP
    J Bioenerg Biomembr; 1994 Aug; 26(4):369-77. PubMed ID: 7844111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel and Potentially MultifacetedDehydroascorbate Reductase Increasing theAntioxidant Systems Is Induced by Beauvericinin Tomato.
    Loi M; Leonardis S; Mulè G; Logrieco AF; Paciolla C
    Antioxidants (Basel); 2020 May; 9(5):. PubMed ID: 32429369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced biomass and oxidative stress tolerance of Synechococcus elongatus PCC 7942 overexpressing the DHAR gene from Brassica juncea.
    Kim YS; Kim IS; Boyd JS; Taton A; Golden JW; Yoon HS
    Biotechnol Lett; 2017 Oct; 39(10):1499-1507. PubMed ID: 28667417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.