BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 9324312)

  • 1. Multiple nuclear proteins bind a novel cis-acting element that regulates the muscle-specific expression of the mouse nicotinic acetylcholine receptor alpha-subunit gene.
    Dennis P; Prody CA
    DNA Cell Biol; 1997 Sep; 16(9):1099-110. PubMed ID: 9324312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An E box mediates activation and repression of the acetylcholine receptor delta-subunit gene during myogenesis.
    Simon AM; Burden SJ
    Mol Cell Biol; 1993 Sep; 13(9):5133-40. PubMed ID: 8355673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 5'-flanking region of the mouse muscle nicotinic acetylcholine receptor beta subunit gene promotes expression in cultured muscle cells and is activated by MRF4, myogenin and myoD.
    Prody CA; Merlie JP
    Nucleic Acids Res; 1992 May; 20(9):2367-72. PubMed ID: 1317551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of a 47 base pair activity-dependent enhancer of the rat nicotinic acetylcholine receptor delta-subunit promoter.
    Walke W; Xiao G; Goldman D
    J Neurosci; 1996 Jun; 16(11):3641-51. PubMed ID: 8642408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional control of muscle plasticity: differential regulation of troponin I genes by electrical activity.
    Calvo S; Stauffer J; Nakayama M; Buonanno A
    Dev Genet; 1996; 19(2):169-81. PubMed ID: 8900050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of troponin T gene expression in chicken fast skeletal muscle: involvement of an M-CAT-like element distinct from the standard M-CAT.
    Watanabe T; Takemasa T; Yonemura I; Hirabayashi T
    J Biochem; 1997 Feb; 121(2):212-8. PubMed ID: 9089392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive expression of the orphan receptor, Rev-erbA alpha, inhibits muscle differentiation and abrogates the expression of the myoD gene family.
    Downes M; Carozzi AJ; Muscat GE
    Mol Endocrinol; 1995 Dec; 9(12):1666-78. PubMed ID: 8614403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual function activity-dependent, muscle-specific enhancer from rat nicotinic acetylcholine receptor delta-subunit gene.
    Walke W; Xiao G; Goldman D
    J Neurobiol; 1996 Nov; 31(3):359-69. PubMed ID: 8910793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The murine Hoxb1 3' RAIDR5 enhancer contains multiple regulatory elements.
    Thompson JR; Huang DY; Gudas LJ
    Cell Growth Differ; 1998 Dec; 9(12):969-81. PubMed ID: 9869297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational level of acetylcholine receptor α mRNA in mouse skeletal muscle is regulated by YB-1 in response to neural activity.
    Ohashi S; Moue M; Tanaka T; Kobayashi S
    Biochem Biophys Res Commun; 2011 Nov; 414(4):647-52. PubMed ID: 21964286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual promoter structure of ZFP106: regulation by myogenin and nuclear respiratory factor-1.
    Grasberger H; Ye H; Mashima H; Bell GI
    Gene; 2005 Jan; 344():143-59. PubMed ID: 15656981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple binding sites for myogenic regulatory factors are required for expression of the acetylcholine receptor gamma-subunit gene.
    Gilmour BP; Fanger GR; Newton C; Evans SM; Gardner PD
    J Biol Chem; 1991 Oct; 266(30):19871-4. PubMed ID: 1657903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the human IgE receptor (Fc epsilon RII/CD23) by EBV. Localization of an intron EBV-responsive enhancer and characterization of its cognate GC-box binding factors.
    Lacy J; Roth G; Shieh B
    J Immunol; 1994 Dec; 153(12):5537-48. PubMed ID: 7989755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental regulation of the Drosophila Tropomyosin I (TmI) gene is controlled by a muscle activator enhancer region that contains multiple cis-elements and binding sites for multiple proteins.
    Lin SC; Storti RV
    Dev Genet; 1997; 20(4):297-306. PubMed ID: 9254904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of muscle acetylcholine receptor turnover by β subunit tyrosine phosphorylation.
    Rudell JB; Ferns MJ
    Dev Neurobiol; 2013 May; 73(5):399-410. PubMed ID: 23325468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two adjacent E box elements and a M-CAT box are involved in the muscle-specific regulation of the rat acetylcholine receptor beta subunit gene.
    Berberich C; Dürr I; Koenen M; Witzemann V
    Eur J Biochem; 1993 Sep; 216(2):395-404. PubMed ID: 7916688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of two regulatory binding sites which confer myotube specific expression of the mono-ADP-ribosyltransferase ART1 gene.
    Friedrich M; Böhlig L; Kirschner RD; Engeland K; Hauschildt S
    BMC Mol Biol; 2008 Oct; 9():91. PubMed ID: 18939989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonmyogenic factors bind nicotinic acetylcholine receptor promoter elements required for response to denervation.
    Bessereau JL; Laudenbach V; Le Poupon C; Changeux JP
    J Biol Chem; 1998 May; 273(21):12786-93. PubMed ID: 9582305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA sequences and their binding proteins required for Sertoli cell-specific transcription of the rat androgen-binding protein gene.
    Fenstermacher DA; Joseph DR
    Mol Endocrinol; 1997 Aug; 11(9):1387-400. PubMed ID: 9259328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of an octamer-like sequence within a crucial region of the androgen-dependent Slp enhancer.
    Scarlett CO; Scheller A; Thompson E; Robins DM
    DNA Cell Biol; 1997 Jan; 16(1):45-57. PubMed ID: 9022044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.