These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9324321)

  • 1. Increase of creatine kinase activity in the visual cortex of human brain during visual stimulation: a 31P magnetization transfer study.
    Chen W; Zhu XH; Adriany G; Ugurbil K
    Magn Reson Med; 1997 Oct; 38(4):551-7. PubMed ID: 9324321
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Chen C; Stephenson MC; Peters A; Morris PG; Francis ST; Gowland PA
    Magn Reson Med; 2018 Jan; 79(1):22-30. PubMed ID: 28303591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy.
    Du F; Cooper AJ; Thida T; Sehovic S; Lukas SE; Cohen BM; Zhang X; Ongür D
    JAMA Psychiatry; 2014 Jan; 71(1):19-27. PubMed ID: 24196348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer.
    Corbett RJ; Laptook AR
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):1070-7. PubMed ID: 7929650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 31P magnetization transfer studies of creatine kinase kinetics in living rabbit brain.
    Degani H; Alger JR; Shulman RG; Petroff OA; Prichard JW
    Magn Reson Med; 1987 Jul; 5(1):1-12. PubMed ID: 3657491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormalities in High-Energy Phosphate Metabolism in First-Episode Bipolar Disorder Measured Using
    Du F; Yuksel C; Chouinard VA; Huynh P; Ryan K; Cohen BM; Öngür D
    Biol Psychiatry; 2018 Dec; 84(11):797-802. PubMed ID: 28527566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of creatine kinase kinetic parameters in rat brain by NMR magnetization transfer. Correlation with brain function.
    Sauter A; Rudin M
    J Biol Chem; 1993 Jun; 268(18):13166-71. PubMed ID: 8514755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creatine kinase rate constant in the human heart at 7T with 1D-ISIS/2D CSI localization.
    Bashir A; Zhang J; Denney TS
    PLoS One; 2020; 15(3):e0229933. PubMed ID: 32191723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 31P saturation transfer and phosphocreatine imaging in the monkey brain.
    Mora B; Narasimhan PT; Ross BD; Allman J; Barker PB
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8372-6. PubMed ID: 1924297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maturational increase in mouse brain creatine kinase reaction rates shown by phosphorus magnetic resonance.
    Holtzman D; McFarland EW; Jacobs D; Offutt MC; Neuringer LJ
    Brain Res Dev Brain Res; 1991 Feb; 58(2):181-8. PubMed ID: 2029764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder.
    Yuksel C; Du F; Ravichandran C; Goldbach JR; Thida T; Lin P; Dora B; Gelda J; O'Connor L; Sehovic S; Gruber S; Ongur D; Cohen BM
    Mol Psychiatry; 2015 Sep; 20(9):1079-84. PubMed ID: 25754079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducibility of creatine kinase reaction kinetics in human heart: a (31) P time-dependent saturation transfer spectroscopy study.
    Bashir A; Gropler R
    NMR Biomed; 2014 Jun; 27(6):663-71. PubMed ID: 24706347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain high-energy phosphates and creatine kinase synthesis rate under graded isoflurane anesthesia: An in vivo (31) P magnetization transfer study at 11.7 tesla.
    Bresnen A; Duong TQ
    Magn Reson Med; 2015 Feb; 73(2):726-30. PubMed ID: 24523049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy.
    Sappey-Marinier D; Calabrese G; Fein G; Hugg JW; Biggins C; Weiner MW
    J Cereb Blood Flow Metab; 1992 Jul; 12(4):584-92. PubMed ID: 1618937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging of human brain creatine kinase activity in vivo.
    Cadoux-Hudson TA; Blackledge MJ; Radda GK
    FASEB J; 1989 Dec; 3(14):2660-6. PubMed ID: 2629743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P magnetization transfer studies in the monkey brain.
    Mora BN; Narasimhan PT; Ross BD
    Magn Reson Med; 1992 Jul; 26(1):100-15. PubMed ID: 1625557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 31P NMR detection of subcellular creatine kinase fluxes in the perfused rat heart: contractility modifies energy transfer pathways.
    Joubert F; Mazet JL; Mateo P; Hoerter JA
    J Biol Chem; 2002 May; 277(21):18469-76. PubMed ID: 11886866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creatine kinase-catalyzed ATP-phosphocreatine exchange: comparison of 31P-NMR saturation transfer technique and radioisotope tracer methods.
    Kupriyanov VV; Lyulina NV; Steinschneider AYa ; Zueva MYu ; Saks VA
    FEBS Lett; 1986 Nov; 208(1):89-93. PubMed ID: 3770212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.