These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9324412)

  • 21. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene.
    Coffman JA; Dickey-Sims C; Haug JS; McCarthy JJ; Robertson AJ
    BMC Biol; 2004 May; 2():6. PubMed ID: 15132741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper inhibits the induction of stress protein synthesis by elevated temperatures in embryos of the sea urchin Strongylocentrus purpuratus.
    Sanders BM; Martin LS
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1994 Nov; 109(3):295-307. PubMed ID: 7894893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for a mesodermal embryonic regulator of the sea urchin CyIIa gene.
    Martin EL; Consales C; Davidson EH; Arnone MI
    Dev Biol; 2001 Aug; 236(1):46-63. PubMed ID: 11456443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embryotoxicity and teratogenicity of pesticide indoxacarb to sea urchin (Strongylocentrotus intermedius).
    Wang H; Huang HH; Ding J; Wang YH
    Water Sci Technol; 2010; 61(11):2733-9. PubMed ID: 20489245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos.
    Salaün P; Boulben S; Mulner-Lorillon O; Bellé R; Sonenberg N; Morales J; Cormier P
    J Cell Sci; 2005 Apr; 118(Pt 7):1385-94. PubMed ID: 15769855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development.
    Materna SC; Howard-Ashby M; Gray RF; Davidson EH
    Dev Biol; 2006 Dec; 300(1):108-20. PubMed ID: 16997293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
    Hinman VF; Nguyen A; Davidson EH
    Dev Biol; 2007 Dec; 312(2):584-95. PubMed ID: 17956756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The TATA binding protein in the sea urchin embryo is maternally derived.
    Edelmann L; Zheng L; Wang ZF; Marzluff W; Wessel GM; Childs G
    Dev Biol; 1998 Dec; 204(1):293-304. PubMed ID: 9851860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in plasma membrane protein composition during early development of the frog Rana ridibunda.
    Beis A; Lazou A; Kontogianni E
    Cell Mol Biol (Noisy-le-grand); 1992; 38(5-6):513-23. PubMed ID: 1483105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lim1-related homeobox gene (HpLim1) expressed in sea urchin embryo.
    Mitsunaga-Nakatsubo K; Kawasaki T; Takeda K; Akasaka K; Shimada H
    Zygote; 2000; 8 Suppl 1():S71-2. PubMed ID: 11191325
    [No Abstract]   [Full Text] [Related]  

  • 34. Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis.
    Urry LA; Hamilton PC; Killian CE; Wilt FH
    Dev Biol; 2000 Sep; 225(1):201-13. PubMed ID: 10964475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional regulation of the gene for epidermal growth factor-like peptides in sea urchin embryos.
    Yamasu K; Suzuki G; Horii K; Suyemitsu T
    Int J Dev Biol; 2000 Oct; 44(7):777-84. PubMed ID: 11128571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Constitutive promoter occupancy by the MBF-1 activator and chromatin modification of the developmental regulated sea urchin alpha-H2A histone gene.
    Di Caro V; Cavalieri V; Melfi R; Spinelli G
    J Mol Biol; 2007 Feb; 365(5):1285-97. PubMed ID: 17134720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Isoelectric focusing of plasma membrane proteins from Strongylocentrotus intermedius sea urchin embryo cells].
    Chuguev IuP; Strongin AIa; Sova VV
    Biokhimiia; 1976 Sep; 41(9):1713-6. PubMed ID: 974182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression patterns of three Par-related genes in sea urchin embryos.
    Shiomi K; Yamaguchi M
    Gene Expr Patterns; 2008 May; 8(5):323-30. PubMed ID: 18316248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time monitoring of functional interactions between upstream and core promoter sequences in living cells of sea urchin embryos.
    Kobayashi A; Watanabe Y; Akasaka K; Kokubo T
    Nucleic Acids Res; 2007; 35(14):4882-94. PubMed ID: 17626044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the sea urchin major vault protein: a possible role for vault ribonucleoprotein particles in nucleocytoplasmic transport.
    Hamill DR; Suprenant KA
    Dev Biol; 1997 Oct; 190(1):117-28. PubMed ID: 9331335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.