These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9325376)

  • 1. Ion transport and membrane potential in CNS myelinated axons I. Normoxic conditions.
    Leppanen L; Stys PK
    J Neurophysiol; 1997 Oct; 78(4):2086-94. PubMed ID: 9325376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion transport and membrane potential in CNS myelinated axons. II. Effects of metabolic inhibition.
    Leppanen L; Stys PK
    J Neurophysiol; 1997 Oct; 78(4):2095-107. PubMed ID: 9325377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of Na-K-ATPase pump inhibition, chemical anoxia, and glycolytic blockade on membrane potential of rat optic nerve.
    Malek SA; Adorante JS; Stys PK
    Brain Res; 2005 Mar; 1037(1-2):171-9. PubMed ID: 15777766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute temperature sensitivity in optic nerve axons explained by an electrogenic membrane potential.
    Coates TA; Woolnough O; Masters JM; Asadova G; Chandrakumar C; Baker MD
    Pflugers Arch; 2015 Nov; 467(11):2337-49. PubMed ID: 25724933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic mechanisms underlying depolarizing responses of an identified insect motor neuron to short periods of hypoxia.
    Le Corronc H; Hue B; Pitman RM
    J Neurophysiol; 1999 Jan; 81(1):307-18. PubMed ID: 9914291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of potassium by nonmyelinating Schwann cells induced by axonal activity.
    Robert A; Jirounek P
    J Neurophysiol; 1994 Dec; 72(6):2570-9. PubMed ID: 7897474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttetanic hyperpolarization produced by electrogenic Na(+)-K+ pump in lizard axons impaled near their motor terminals.
    Morita K; David G; Barrett JN; Barrett EF
    J Neurophysiol; 1993 Nov; 70(5):1874-84. PubMed ID: 8294960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca(2+)-mediated injury in myelinated CNS axons.
    Waxman SG; Black JA; Ransom BR; Stys PK
    Brain Res; 1994 May; 644(2):197-204. PubMed ID: 8050031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger.
    Stys PK; Waxman SG; Ransom BR
    J Neurosci; 1992 Feb; 12(2):430-9. PubMed ID: 1311030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential.
    Barrett EF; Barrett JN
    J Physiol; 1982 Feb; 323():117-44. PubMed ID: 6980272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of calcium and sodium fluxes in anoxic myelinated central nervous system axons.
    Stys PK; Lopachin RM
    Neuroscience; 1998 Jan; 82(1):21-32. PubMed ID: 9483500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninactivating, tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons.
    Stys PK; Sontheimer H; Ransom BR; Waxman SG
    Proc Natl Acad Sci U S A; 1993 Aug; 90(15):6976-80. PubMed ID: 8394004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action potential conduction and sodium channel content in the optic nerve of the myelin-deficient rat.
    Utzschneider DA; Thio C; Sontheimer H; Ritchie JM; Waxman SG; Kocsis JD
    Proc Biol Sci; 1993 Dec; 254(1341):245-50. PubMed ID: 8108457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of calcium homeostasis to axonal sodium in axons of mouse optic nerve.
    Verbny Y; Zhang CL; Chiu SY
    J Neurophysiol; 2002 Aug; 88(2):802-16. PubMed ID: 12163532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninactivating, tetrodotoxin-sensitive Na+ conductance in peripheral axons.
    Tokuno HA; Kocsis JD; Waxman SG
    Muscle Nerve; 2003 Aug; 28(2):212-7. PubMed ID: 12872326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aberrant chloride transport contributes to anoxic/ischemic white matter injury.
    Malek SA; Coderre E; Stys PK
    J Neurosci; 2003 May; 23(9):3826-36. PubMed ID: 12736353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of the effects of tetrodotoxin and the removal of external Na+ on the resting potential: evidence of separate pathways for the resting and excitable Na currents in squid axon.
    Chang DC; Liu J
    Cell Mol Neurobiol; 1985 Dec; 5(4):311-20. PubMed ID: 2417714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diuretic-sensitive electroneutral Na
    Kanagaratnam M; Pendleton C; Souza DA; Pettit J; Howells J; Baker MD
    J Physiol; 2017 Jun; 595(11):3471-3482. PubMed ID: 28213919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the Na+/K+-ATPase in regulating the membrane potential in rat peritoneal mast cells.
    Friis UG; Praetorius HA; Knudsen T; Johansen T
    Br J Pharmacol; 1997 Oct; 122(4):599-604. PubMed ID: 9375953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of injury-induced calcium entry into peripheral nerve myelinated axons: role of reverse sodium-calcium exchange.
    Lehning EJ; Doshi R; Isaksson N; Stys PK; LoPachin RM
    J Neurochem; 1996 Feb; 66(2):493-500. PubMed ID: 8592118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.