These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9326303)

  • 1. Amino-terminal analysis of tryptophan hydroxylase: protein kinase phosphorylation occurs at serine-58.
    Kumer SC; Mockus SM; Rucker PJ; Vrana KE
    J Neurochem; 1997 Oct; 69(4):1738-45. PubMed ID: 9326303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carboxyl terminal deletion analysis of tryptophan hydroxylase.
    Mockus SM; Kumer SC; Vrana KE
    Biochim Biophys Acta; 1997 Oct; 1342(2):132-40. PubMed ID: 9392522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of amino-terminal sequences contributing to tryptophan hydroxylase tetramer formation.
    Yohrling GJ; Mockus SM; Vrana KE
    J Mol Neurosci; 1999 Feb; 12(1):23-34. PubMed ID: 10636468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation and activation of brain tryptophan hydroxylase: identification of serine-58 as a substrate site for protein kinase A.
    Kuhn DM; Arthur R; States JC
    J Neurochem; 1997 May; 68(5):2220-3. PubMed ID: 9109552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chimeric tyrosine/tryptophan hydroxylase. The tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity.
    Mockus SM; Kumer SC; Vrana KE
    J Mol Neurosci; 1997 Aug; 9(1):35-48. PubMed ID: 9356925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant rabbit tryptophan hydroxylase is a substrate for cAMP-dependent protein kinase.
    Vrana KE; Rucker PJ; Kumer SC
    Life Sci; 1994; 55(13):1045-52. PubMed ID: 8084209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of substrate orienting and phosphorylation sites within tryptophan hydroxylase using homology-based molecular modeling.
    Jiang GC; Yohrling GJ; Schmitt JD; Vrana KE
    J Mol Biol; 2000 Sep; 302(4):1005-17. PubMed ID: 10993738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic core of rat tyrosine hydroxylase: terminal deletion analysis of bacterially expressed enzyme.
    Walker SJ; Liu X; Roskoski R; Vrana KE
    Biochim Biophys Acta; 1994 May; 1206(1):113-9. PubMed ID: 7910484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and deletion mutagenesis of tryptophan hydroxylase fusion proteins: delineation of the enzyme catalytic core.
    D'Sa CM; Arthur RE; Kuhn DM
    J Neurochem; 1996 Sep; 67(3):917-26. PubMed ID: 8752096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of the S41Y (C2755A) polymorphism of tryptophan hydroxylase 2.
    Carkaci-Salli N; Salli U; Tekin I; Hengst JA; Zhao MK; Gilman TL; Andrews AM; Vrana KE
    J Neurochem; 2014 Sep; 130(6):748-58. PubMed ID: 24899127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function of recombinant Na/H exchanger regulatory factor (NHE-RF).
    Weinman EJ; Steplock D; Tate K; Hall RA; Spurney RF; Shenolikar S
    J Clin Invest; 1998 May; 101(10):2199-206. PubMed ID: 9593775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in the molecular characterization of tryptophan hydroxylase.
    Mockus SM; Vrana KE
    J Mol Neurosci; 1998 Jun; 10(3):163-79. PubMed ID: 9770640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intersubunit binding domains within tyrosine hydroxylase and tryptophan hydroxylase.
    Yohrling GJ; Jiang GC; Mockus SM; Vrana KE
    J Neurosci Res; 2000 Aug; 61(3):313-20. PubMed ID: 10900078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functions of the C-terminal domain of CTP: phosphocholine cytidylyltransferase. Effects of C-terminal deletions on enzyme activity, intracellular localization and phosphorylation potential.
    Cornell RB; Kalmar GB; Kay RJ; Johnson MA; Sanghera JS; Pelech SL
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):699-708. PubMed ID: 7654214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation and activation of tryptophan hydroxylase 2: identification of serine-19 as the substrate site for calcium, calmodulin-dependent protein kinase II.
    Kuhn DM; Sakowski SA; Geddes TJ; Wilkerson C; Haycock JW
    J Neurochem; 2007 Nov; 103(4):1567-73. PubMed ID: 17727633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation and stabilization of human tryptophan hydroxylase 2 by phosphorylation and 14-3-3 binding.
    Winge I; McKinney JA; Ying M; D'Santos CS; Kleppe R; Knappskog PM; Haavik J
    Biochem J; 2008 Feb; 410(1):195-204. PubMed ID: 17973628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of human tryptophan hydroxylase 2 N- and C-terminus on enzymatic activity and oligomerization.
    Tenner K; Walther D; Bader M
    J Neurochem; 2007 Sep; 102(6):1887-1894. PubMed ID: 17539919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonin synthesis by two distinct enzymes in Drosophila melanogaster.
    Coleman CM; Neckameyer WS
    Arch Insect Biochem Physiol; 2005 May; 59(1):12-31. PubMed ID: 15822093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan hydroxylase is phosphorylated by protein kinase A.
    Johansen PA; Jennings I; Cotton RG; Kuhn DM
    J Neurochem; 1995 Aug; 65(2):882-8. PubMed ID: 7616249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of phosphorylated tryptophan hydroxylase with 14-3-3 proteins.
    Banik U; Wang GA; Wagner PD; Kaufman S
    J Biol Chem; 1997 Oct; 272(42):26219-25. PubMed ID: 9334190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.