BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9326309)

  • 21. The Kir6.1-protein, a pore-forming subunit of ATP-sensitive potassium channels, is prominently expressed by giant cholinergic interneurons in the striatum of the rat brain.
    Thomzig A; Prüss H; Veh RW
    Brain Res; 2003 Oct; 986(1-2):132-8. PubMed ID: 12965237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tolbutamide suppresses anoxic outward current of hippocampal neurons.
    Godfraind JM; Krnjević K
    Neurosci Lett; 1993 Nov; 162(1-2):101-4. PubMed ID: 8121608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adenylate cyclase in striatal cholinergic interneurons regulates acetylcholine release.
    Login IS; Hewlett EL
    Brain Res; 1996 Oct; 735(2):330-4. PubMed ID: 8911674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A1 adenosine receptor-mediated modulation of neuronal ATP-sensitive K channels in rat substantia nigra.
    Andoh T; Ishiwa D; Kamiya Y; Echigo N; Goto T; Yamada Y
    Brain Res; 2006 Dec; 1124(1):55-61. PubMed ID: 17084818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pancreatic beta-cell K(ATP) channel activity and membrane-binding studies with nateglinide: A comparison with sulfonylureas and repaglinide.
    Hu S; Wang S; Fanelli B; Bell PA; Dunning BE; Geisse S; Schmitz R; Boettcher BR
    J Pharmacol Exp Ther; 2000 May; 293(2):444-52. PubMed ID: 10773014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus.
    Zawar C; Plant TD; Schirra C; Konnerth A; Neumcke B
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):327-41. PubMed ID: 9852317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Verapamil, a phenylalkylamine Ca2+ channel blocker, inhibits ATP-sensitive K+ channels in insulin-secreting cells from rats.
    Lebrun P; Antoine MH; Ouedraogo R; Pirotte B; Herchuelz A; Cosgrove KE; Kane C; Dunne MJ
    Diabetologia; 1997 Dec; 40(12):1403-10. PubMed ID: 9447947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of K+ channels by intracellular ATP in human neocortical neurons.
    Jiang C; Haddad GG
    J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple sulfonylurea-sensitive potassium channels: a novel subtype modulated by dopamine.
    Lin YJ; Greif GJ; Freedman JE
    Mol Pharmacol; 1993 Nov; 44(5):907-10. PubMed ID: 8246912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulphonylurea drugs no longer inhibit ATP-sensitive K+ channels during metabolic stress in cardiac muscle.
    Findlay I
    J Pharmacol Exp Ther; 1993 Jul; 266(1):456-67. PubMed ID: 8331572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of sulphonylureas on the volume-sensitive anion channel in rat pancreatic beta-cells.
    Best L; Benington S
    Br J Pharmacol; 1998 Oct; 125(4):874-8. PubMed ID: 9831927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The molecular site of action of K(ATP) channel inhibitors determines their ability to inhibit iNOS-mediated relaxation in rat aorta.
    Wilson AJ; Clapp LH
    Cardiovasc Res; 2002 Oct; 56(1):154-63. PubMed ID: 12237176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pharmacological characterization of the sulphonylurea receptor in rat isolated aorta.
    Löffler C; Quast U
    Br J Pharmacol; 1997 Feb; 120(3):476-80. PubMed ID: 9031752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new hypoglycemic agent, A-4166, inhibits ATP-sensitive potassium channels in rat pancreatic beta-cells.
    Akiyoshi M; Kakei M; Nakazaki M; Tanaka H
    Am J Physiol; 1995 Feb; 268(2 Pt 1):E185-93. PubMed ID: 7864093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulphonylureas do not increase insulin secretion by a mechanism other than a rise in cytoplasmic Ca2+ in pancreatic B-cells.
    Garcia-Barrado MJ; Jonas JC; Gilon P; Henquin JC
    Eur J Pharmacol; 1996 Mar; 298(3):279-86. PubMed ID: 8846827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of tolbutamide, glibenclamide and diazoxide upon action potentials recorded from rat ventricular muscle.
    Faivre JF; Findlay I
    Biochim Biophys Acta; 1989 Aug; 984(1):1-5. PubMed ID: 2504288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potassium channel modulation in rat portal vein by ATP depletion: a comparison with the effects of levcromakalim (BRL 38227).
    Noack T; Edwards G; Deitmer P; Weston AH
    Br J Pharmacol; 1992 Dec; 107(4):945-55. PubMed ID: 1467843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of nateglinide with K(ATP) channel in beta-cells underlies its unique insulinotropic action.
    Hu S
    Eur J Pharmacol; 2002 May; 442(1-2):163-71. PubMed ID: 12020694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A role for a glibenclamide-sensitive, relatively ATP-insensitive K+ current in regulating membrane potential and current in rat aorta.
    Mishra SK; Aaronson PI
    Cardiovasc Res; 1999 Nov; 44(2):429-35. PubMed ID: 10690319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscarinic IPSPs in rat striatal cholinergic interneurones.
    Calabresi P; Centonze D; Pisani A; Sancesario G; North RA; Bernardi G
    J Physiol; 1998 Jul; 510 ( Pt 2)(Pt 2):421-7. PubMed ID: 9705993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.