BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 932632)

  • 1. Flight energetics in sphinx moths: heat production and heat loss in Hyles lineata during free flight.
    Casey TM
    J Exp Biol; 1976 Jun; 64(3):545-60. PubMed ID: 932632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flight energetics of sphinx moths: power input during hovering flight.
    Casey TM
    J Exp Biol; 1976 Jun; 64(3):529-43. PubMed ID: 932631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of thermal balance in flying Centris pallida (Hymenoptera: Anthophoridae).
    Roberts SP; Harrison JF; Hadley NF
    J Exp Biol; 1998 Aug; 201(Pt 15):2321-31. PubMed ID: 9662503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoregulation in endothermic insects.
    Heinrich B
    Science; 1974 Aug; 185(4153):747-56. PubMed ID: 4602075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal physiological ecology of Colias butterflies in flight.
    Tsuji JS; Kingsolver JG; Watt WB
    Oecologia; 1986 May; 69(2):161-170. PubMed ID: 28311353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal stability and muscle efficiency in hovering orchid bees (Apidae: Euglossini).
    Borrell BJ; Medeiros MJ
    J Exp Biol; 2004 Aug; 207(Pt 17):2925-33. PubMed ID: 15277548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of thermal stability during flight in the honeybee apis mellifera.
    Roberts SP; Harrison JF
    J Exp Biol; 1999 Jun; 202 (Pt 11)():1523-33. PubMed ID: 10229698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Honeybee flight metabolic rate: does it depend upon air temperature?
    Woods WA; Heinrich B; Stevenson RD
    J Exp Biol; 2005 Mar; 208(Pt 6):1161-73. PubMed ID: 15767315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A desert bee thermoregulates with an abdominal convector during flight.
    Johnson MG; Glass JR; Harrison JF
    J Exp Biol; 2022 Oct; 225(19):. PubMed ID: 36093639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-quality, long-read genome assembly of the whitelined sphinx moth (Lepidoptera: Sphingidae: Hyles lineata) shows highly conserved melanin synthesis pathway genes.
    Godfrey RK; Britton SE; Mishra S; Goldberg JK; Kawahara AY
    G3 (Bethesda); 2023 Jun; 13(6):. PubMed ID: 37119801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of flight behavior and heat production on air temperature in the green darner dragonfly Anax junius (Odonata: Aeshnidae).
    May M
    J Exp Biol; 1995; 198(Pt 11):2385-92. PubMed ID: 9320306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thoracic Temperature Stabilization byn Blood Circulation in a Free-Flying Moth.
    Heinrich B
    Science; 1970 May; 168(3931):580-2. PubMed ID: 17806779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allometry of post-flight cooling rates in moths: a comparison with vertebrate homeotherms.
    Bartholomew GA; Epting RJ
    J Exp Biol; 1975 Dec; 63(3):603-13. PubMed ID: 1214120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of air temperature on ventilation rates and thermoregulation of a flying bat.
    Thomas SP; Follette DB; Farabaugh AT
    Am J Physiol; 1991 May; 260(5 Pt 2):R960-8. PubMed ID: 2035709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ventilation and respiratory evaporation in the flying crow, Corvus ossifragus.
    Bernstein MH
    Respir Physiol; 1976 May; 26(3):371-82. PubMed ID: 951540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous control of head and thoracic temperature by the green darner dragonfly Anax junius (Odonata: Aeshnidae).
    May M
    J Exp Biol; 1995; 198(Pt 11):2373-84. PubMed ID: 9320293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing thermal stress with flight distance in stingless bees (Melipona subnitida) in the Brazilian tropical dry forest: Implications for constraint on foraging range.
    Souza-Junior JBF; Teixeira-Souza VHDS; Oliveira-Souza A; de Oliveira PF; de Queiroz JPAF; Hrncir M
    J Insect Physiol; 2020; 123():104056. PubMed ID: 32387237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the importance of radiative heat exchange during nocturnal flight in birds.
    Léger J; Larochelle J
    J Exp Biol; 2006 Jan; 209(Pt 1):103-14. PubMed ID: 16354782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water and heat balance during flight in the rose-colored starling (Sturnus roseus).
    Engel S; Biebach H; Visser GH
    Physiol Biochem Zool; 2006; 79(4):763-74. PubMed ID: 16826502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achievement of thermal stability by varying metabolic heat production in flying honeybees.
    Harrison JF; Fewell JH; Roberts SP; Hall HG
    Science; 1996 Oct; 274(5284):88-90. PubMed ID: 8810252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.