BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

697 related articles for article (PubMed ID: 9326388)

  • 21. Chromatid damage after G2 phase x-irradiation of cells from cancer-prone individuals implicates deficiency in DNA repair.
    Parshad R; Sanford KK; Jones GM
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5612-6. PubMed ID: 6577447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Familial and cutaneous features of dysplastic nevi: a case-control study.
    Tucker MA; Crutcher WA; Hartge P; Sagebiel RW
    J Am Acad Dermatol; 1993 Apr; 28(4):558-64. PubMed ID: 8463456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Susceptibility to fluorescent light-induced chromatid breaks associated with DNA repair deficiency and malignant transformation in culture.
    Parshad R; Sanford KK; Jones GM; Tarone RE; Hoffman HA; Grier AH
    Cancer Res; 1980 Dec; 40(12):4415-9. PubMed ID: 7438072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dysplastic nevi.
    Farber MJ; Heilman ER; Friedman RJ
    Dermatol Clin; 2012 Jul; 30(3):389-404. PubMed ID: 22800547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromosomal sensitivity to X-ray irradiation during the G2 phase in lymphocytes of patients with hereditary cutaneous malignant melanoma as compared to healthy controls.
    Andersson HC; Lewensohn R; Månsson-Brahme E
    Mutat Res; 1999 Mar; 425(1):9-20. PubMed ID: 10082912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deficient DNA repair capacity, a predisposing factor in breast cancer.
    Parshad R; Price FM; Bohr VA; Cowans KH; Zujewski JA; Sanford KK
    Br J Cancer; 1996 Jul; 74(1):1-5. PubMed ID: 8679441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA repair capacity correlates with mutagen sensitivity in lymphoblastoid cell lines.
    Wei Q; Spitz MR; Gu J; Cheng L; Xu X; Strom SS; Kripke ML; Hsu TC
    Cancer Epidemiol Biomarkers Prev; 1996 Mar; 5(3):199-204. PubMed ID: 8833620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protective action of plant polyphenols on radiation-induced chromatid breaks in cultured human cells.
    Parshad R; Sanford KK; Price FM; Steele VE; Tarone RE; Kelloff GJ; Boone CW
    Anticancer Res; 1998; 18(5A):3263-6. PubMed ID: 9858893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA ploidy and nuclear morphometry for the classification of dysplastic nevi.
    Williams RA; Baak JP; Meijer GA; Charlton IG
    Anal Quant Cytol Histol; 1999 Oct; 21(5):437-44. PubMed ID: 10560527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human lymphocytes exposed to low doses of ionizing radiations become refractory to high doses of radiation as well as to chemical mutagens that induce double-strand breaks in DNA.
    Wolff S; Afzal V; Wiencke JK; Olivieri G; Michaeli A
    Int J Radiat Biol Relat Stud Phys Chem Med; 1988 Jan; 53(1):39-47. PubMed ID: 3257477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melanocytic nevi, dysplastic nevi, and malignant melanoma in children from melanoma-prone families.
    Novakovic B; Clark WH; Fears TR; Fraser MC; Tucker MA
    J Am Acad Dermatol; 1995 Oct; 33(4):631-6. PubMed ID: 7673498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Promoter CpG island hypermethylation in dysplastic nevus and melanoma: CLDN11 as an epigenetic biomarker for malignancy.
    Gao L; van den Hurk K; Moerkerk PTM; Goeman JJ; Beck S; Gruis NA; van den Oord JJ; Winnepenninckx VJ; van Engeland M; van Doorn R
    J Invest Dermatol; 2014 Dec; 134(12):2957-2966. PubMed ID: 24999589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From sporadic atypical nevi to familial melanoma: risk analysis for melanoma in sporadic atypical nevus patients.
    de Snoo FA; Kroon MW; Bergman W; ter Huurne JA; Houwing-Duistermaat JJ; van Mourik L; Snels DG; Breuning MH; Willemze R; Frants RR; Gruis NA
    J Am Acad Dermatol; 2007 May; 56(5):748-52. PubMed ID: 17276542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Gregor Mendel and dysplastic nevi].
    Happle R
    Hautarzt; 1989 Feb; 40(2):70-6. PubMed ID: 2654075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dysplastic nevi and melanoma.
    Milgraum SS; Papa CM
    N J Med; 1989 May; 86(5):389-92. PubMed ID: 2739950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sister chromatid exchanges, hyperdiploidy and chromosomal rearrangements studied in cells from melanoma-prone individuals belonging to families with the dysplastic nevus syndrome.
    Jaspers NG; Roza-de Jongh EJ; Donselaar IG; Van Velzen-Tillemans JT; van Hemel JO; Rümke P; van der Kamp AW
    Cancer Genet Cytogenet; 1987 Jan; 24(1):33-43. PubMed ID: 3791172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of p53 mutations in benign and dysplastic nevi.
    Levin DB; Wilson K; Valadares de Amorim G; Webber J; Kenny P; Kusser W
    Cancer Res; 1995 Oct; 55(19):4278-82. PubMed ID: 7671235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Dysplastic nevus syndrome].
    Andreev VC; Konstantinov K
    Z Hautkr; 1986 Dec; 61(24):1793-8. PubMed ID: 3825220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Persistence of chromatid damage after G2 phase X-irradiation in lymphoblastoid cells from Gardner's syndrome.
    Takai S; Price FM; Sanford KK; Tarone RE; Parshad R
    Carcinogenesis; 1990 Aug; 11(8):1425-8. PubMed ID: 2387030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The dysplastic nevus: recognition and management.
    Barnhill RL; Hurwitz S; Duray PH; Arons MS
    Plast Reconstr Surg; 1988 Feb; 81(2):280-9. PubMed ID: 3275948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.