These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 932687)
1. Chloramphenicol acetylation in Streptomyces. Shaw WV; Hopwood DA J Gen Microbiol; 1976 May; 94(1):159-66. PubMed ID: 932687 [TBL] [Abstract][Full Text] [Related]
2. Distribution of chloramphenicol acetyltransferase and chloramphenicol-3-acetate esterase among Streptomyces and Corynebacterium. Nakano H; Matsuhashi Y; Takeuchi T; Umezawa H J Antibiot (Tokyo); 1977 Jan; 30(1):76-82. PubMed ID: 838634 [TBL] [Abstract][Full Text] [Related]
3. Cloning of a chloramphenicol acetyltransferase gene of Streptomyces acrimycini and its expression in Streptomyces and Escherichia coli. Gil JA; Kieser HM; Hopwood DA Gene; 1985; 38(1-3):1-8. PubMed ID: 3905512 [TBL] [Abstract][Full Text] [Related]
4. Chloramphenicol acetylransferase-independent chloramphenicol resistance in Streptomyces coelicolor A3(2). Freeman RF; Bibb MJ; Hopwood DA J Gen Microbiol; 1977 Feb; 98(2):453-65. PubMed ID: 856941 [TBL] [Abstract][Full Text] [Related]
5. A chromosomal gene for chloramphenicol acetyltransferase in Streptomyces acrimycini. Wright HM; Hopwood DA J Gen Microbiol; 1977 Oct; 102(2):417-21. PubMed ID: 925681 [No Abstract] [Full Text] [Related]
6. Chloramphenicol resistance in Streptomyces: cloning and characterization of a chloramphenicol hydrolase gene from Streptomyces venezuelae. Mosher RH; Ranade NP; Schrempf H; Vining LC J Gen Microbiol; 1990 Feb; 136(2):293-301. PubMed ID: 2324705 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the mechanism of chloramphenicol acetyltransferase by steady-state kinetics. Evidence for a ternary-complex mechanism. Kleanthous C; Shaw WV Biochem J; 1984 Oct; 223(1):211-20. PubMed ID: 6594136 [TBL] [Abstract][Full Text] [Related]
8. Metabolism of chloramphenicol by the producing organism. Some properties of chloramphenicol hydrolase. Malik VS; Vining LC Can J Microbiol; 1971 Oct; 17(10):1287-90. PubMed ID: 5131753 [No Abstract] [Full Text] [Related]
9. Transfer of drug resistance to myxococcus from bacteria carrying drug-resistance factors. Parish JH J Gen Microbiol; 1975 Apr; 87(2):198-210. PubMed ID: 806655 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of self-protection in a puromycin-producing micro-organism. Sugiyama M; Paik SY; Nomi R J Gen Microbiol; 1985 Aug; 131(8):1999-2005. PubMed ID: 4056740 [TBL] [Abstract][Full Text] [Related]
11. Some properties of chloramphenicol acetyltransferase, with particular reference to the mechanism of inhibition by basic triphenylmethane dyes. Tanaka H; Izaki K; Takahashi H J Biochem; 1974 Nov; 76(5):1009-19. PubMed ID: 4616029 [No Abstract] [Full Text] [Related]
12. Inactivation of chloramphenicol by O-phosphorylation. A novel resistance mechanism in Streptomyces venezuelae ISP5230, a chloramphenicol producer. Mosher RH; Camp DJ; Yang K; Brown MP; Shaw WV; Vining LC J Biol Chem; 1995 Nov; 270(45):27000-6. PubMed ID: 7592948 [TBL] [Abstract][Full Text] [Related]
13. Isolation of bacteria producing chloramphenicol acetyltransferase from soil and their characterization. Datta K; Mukherjee SK; Majumdar MK; Roy SK Microbiologica; 1982 Jul; 5(3):171-8. PubMed ID: 6956790 [TBL] [Abstract][Full Text] [Related]
14. DNA deletions in spontaneous chloramphenicol-sensitive mutants of Streptomyces coelicolor A 3(2) and Streptomyces lividans 66. Flett F; Cullum J Mol Gen Genet; 1987 May; 207(2-3):499-502. PubMed ID: 3475527 [TBL] [Abstract][Full Text] [Related]
15. Adenosine 3',5'-cyclic monophosphate regulation of chloramphenicol acetyltransferase synthesis in vitro from P1CM DNA. Dottin RP; Shiner LS; Hoar DI Virology; 1973 Feb; 51(2):509-11. PubMed ID: 4348306 [No Abstract] [Full Text] [Related]
16. Biotransformation of antibiotics. II. Investigation of the chloramphenicol acetyltransferase in Streptomyces griseus. El-Kersh TA; Plourde JR J Antibiot (Tokyo); 1976 Nov; 29(11):1189-98. PubMed ID: 825495 [TBL] [Abstract][Full Text] [Related]
17. Mutations in the chloramphenicol acetyltransferase (S61G, Y105C) increase accumulated amounts and resistance in Pseudomonas aeruginosa. Wang J; Liu JH FEMS Microbiol Lett; 2004 Jul; 236(2):197-204. PubMed ID: 15251197 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of multiple aminoglycoside resistance of kasugamycin-producing Streptomyces kasugaensis MB273: involvement of two types of acetyltransferases in resistance to astromicin group antibiotics. Hotta K; Ogata T; Ishikawa J; Okanishi M; Mizuno S; Morioka M; Naganawa H; Okami Y J Antibiot (Tokyo); 1996 Jul; 49(7):682-8. PubMed ID: 8784431 [TBL] [Abstract][Full Text] [Related]
19. Purification, properties and immunological detection of a bromoperoxidase-catalase from Streptomyces venezuelae and from a chloramphenicol-nonproducing mutant. Knoch M; van Pée KH; Vining LC; Lingens F J Gen Microbiol; 1989 Sep; 135(9):2493-502. PubMed ID: 2628543 [TBL] [Abstract][Full Text] [Related]
20. Self-resistance of the nourseothricin-producing strain Streptomyces noursei. Haupt I; Thrum H; Noack D J Basic Microbiol; 1986; 26(6):323-8. PubMed ID: 3027297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]