These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 932687)

  • 21. Genetics and biochemical studies of chloramphenicol-nonproducing mutants of Streptomyces venezuelae carrying plasmid.
    Akagawa H; Okanishi M; Umezawa H
    J Antibiot (Tokyo); 1979 Jun; 32(6):610-20. PubMed ID: 468736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A factor involved in chloramphenicol resistance in Streptomyces coelicolor A3(2): its transfer in the absence of the fertility factor.
    Sermonti G; Petris A; Micheli M; Lanfaloni L
    J Gen Microbiol; 1977 Jun; 100(2):347-53. PubMed ID: 894264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Streptomyces lividans, acetyl-CoA synthetase activity is controlled by O-serine and N
    VanDrisse CM; Escalante-Semerena JC
    Mol Microbiol; 2018 Feb; 107(4):577-594. PubMed ID: 29266439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Alteration of serine/threonine protein kinase activity during growth of the wild type Streptomyces avermitilis strain and its chloramphenicol-resistant mutant].
    Elizarov SM; Mironov VA; Danilenko VN
    Mikrobiologiia; 2000; 69(3):345-51. PubMed ID: 10920803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of addition of chloramphenicol on the growth and ultrastructure of Streptomyces venezuelae.
    Bewick MW; Williams ST
    Microbios; 1977; 19(75):27-35. PubMed ID: 616516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An inhibitor of chloramphenicol acetyltransferase produced by Streptomyces.
    Miyamura S; Koizumi K; Nakagawa Y
    J Antibiot (Tokyo); 1979 Nov; 32(11):1217-8. PubMed ID: 528389
    [No Abstract]   [Full Text] [Related]  

  • 27. Comparative Genomics Determines Strain-Dependent Secondary Metabolite Production in
    Kim W; Lee N; Hwang S; Lee Y; Kim J; Cho S; Palsson B; Cho BK
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32516997
    [No Abstract]   [Full Text] [Related]  

  • 28. The acrAB locus is involved in modulating intracellular acetyl coenzyme A levels in a strain of Escherichia coli CM2555 expressing the chloramphenicol acetyltransferase (cat) gene.
    Potrykus J; Wegrzyn G
    Arch Microbiol; 2003 Nov; 180(5):362-6. PubMed ID: 14614545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of chloramphenicol acetyltransferase from chloramphenicol-resistant Staphylococcus aureus.
    Shaw WV; Brodsky RF
    J Bacteriol; 1968 Jan; 95(1):28-36. PubMed ID: 4965980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chloramphenicol binding site of an fi- R-factor-specified variant of chloramphenicol acetyltransferase.
    Nitzan Y; Gozhansky S
    Arch Biochem Biophys; 1980 Apr; 201(1):115-20. PubMed ID: 6994649
    [No Abstract]   [Full Text] [Related]  

  • 31. Phosphorylation of chloramphenicol by a recombinant protein Yhr2 from Streptomyces avermitilis MA4680.
    Rajesh T; Sung C; Kim H; Song E; Park HY; Jeon JM; Yoo D; Kim HJ; Kim YH; Choi KY; Song KG; Yang YH
    Bioorg Med Chem Lett; 2013 Jun; 23(12):3614-9. PubMed ID: 23659856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chloramphenicol acetyltransferase of Bacteroides fragilis.
    Britz ML; Wilkinson RG
    Antimicrob Agents Chemother; 1978 Jul; 14(1):105-11. PubMed ID: 28690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resistance mechanism of chloramphenicol in Streptococcus haemolyticus, Streptococcus pneumoniae and Streptococcus faecalis.
    Miyamura S; Ochiai H; Nitahara Y; Nakagawa Y; Terao M
    Microbiol Immunol; 1977; 21(2):69-76. PubMed ID: 16197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Modulation of serine/threonine protein kinase activity in chloramphenicol-resistant mutants of Streptomyces avermitilis].
    Elizarov SM; Gavrilina AV; Danilenko VN
    Mol Biol (Mosk); 2004; 38(3):394-403. PubMed ID: 15285607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mechanism of resistance to puromycin and to the puromycin-precursor O-demethyl-puromycin in Streptomyces alboniger.
    Pérez-González JA; Vara J; Jiménez A
    J Gen Microbiol; 1985 Nov; 131(11):2877-83. PubMed ID: 4093761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for chloramphenicol tolerance in Streptomyces venezuelae by chloramphenicol phosphotransferase activity.
    Izard T
    Protein Sci; 2001 Aug; 10(8):1508-13. PubMed ID: 11468347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chloramphenicol.
    Malik VS
    Adv Appl Microbiol; 1972; 15():297-336. PubMed ID: 4273932
    [No Abstract]   [Full Text] [Related]  

  • 38. [Characterization of multiple changes of antibiotic resistance characters in Streptomyces coelicolor A3(2)].
    Fedorenko VA; Starodubtseva LI; Zavorotnaia SA; Lomovskaia ND; Danilenko VN
    Genetika; 1989 Apr; 25(4):626-34. PubMed ID: 2547698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Amplifying sequences in the Streptomyces coelicolor A3 (2) gene].
    Zavorotnaia SA; Fedorenko VA; Starodubtseva LI; Danilenko VN
    Antibiot Khimioter; 1990 Dec; 35(12):21-3. PubMed ID: 1964037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chloramphenicol resistance of three different flavobacteria.
    Süssmuth R; Haag R; Lingens F
    J Antibiot (Tokyo); 1979 Dec; 32(12):1293-302. PubMed ID: 541254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.