BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 9327142)

  • 1. Preparation and properties of oligodeoxynucleotides containing 5-iodouracil and 5-bromo- and 5-iodocytosine.
    Ferrer E; Wiersma M; Kazimierczak B; Müller CW; Eritja R
    Bioconjug Chem; 1997; 8(5):757-61. PubMed ID: 9327142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and cleavage of oligodeoxynucleotides containing a 5-hydroxyuracil residue at a defined site.
    Fujimoto J; Tran L; Sowers LC
    Chem Res Toxicol; 1997 Nov; 10(11):1254-8. PubMed ID: 9403179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of oligonucleotides containing 5-chlorocytosine.
    Kang JI; Burdzy A; Liu P; Sowers LC
    Chem Res Toxicol; 2004 Sep; 17(9):1236-44. PubMed ID: 15377157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleobase modified peptide nucleic acid.
    Hudson RH; Viirre RD; McCourt N; Tse J
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1029-33. PubMed ID: 14565336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-Hydroxymethylcytosine and 5-formylcytosine containing deoxyoligonucleotides: facile syntheses and melting temperature studies.
    Xuan S; Wu Q; Cui L; Zhang D; Shao F
    Bioorg Med Chem Lett; 2015 Mar; 25(6):1186-91. PubMed ID: 25704892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Schiff base-mediated base pairing.
    Dohno C; Okamoto A; Saito I
    Nucleic Acids Symp Ser (Oxf); 2005; (49):185-6. PubMed ID: 17150695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable, specific, and reversible base pairing via Schiff base.
    Dohno C; Okamoto A; Saito I
    J Am Chem Soc; 2005 Nov; 127(47):16681-4. PubMed ID: 16305258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient photochemical 2'-deoxyribonolactone formation at the diagonal loop of a 5-iodouracil-containing antiparallel G-quartet.
    Xu Y; Sugiyama H
    J Am Chem Soc; 2004 May; 126(20):6274-9. PubMed ID: 15149224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new modified cytosine base capable of base pairing with guanine using four hydrogen bonds.
    Yamada K; Masaki Y; Tsunoda H; Ohkubo A; Seio K; Sekine M
    Org Biomol Chem; 2014 Apr; 12(14):2255-62. PubMed ID: 24569493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical deoxyribose C2' oxidation in 5-iodouracil-containing hexanucleotide.
    Sugiyama H; Yamaguchi E; Yamashita K; Fujimoto K; Tsutsumi Y; Saito I
    Nucleic Acids Symp Ser; 1992; (27):7-8. PubMed ID: 1289829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the rapid deprotection of synthetic oligonucleotides and analogs.
    Polushin NN; Morocho AM; Chen BC; Cohen JS
    Nucleic Acids Res; 1994 Feb; 22(4):639-45. PubMed ID: 8127712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of oligodeoxynucleotides containing N4-mercaptoethylcytosine and their use in the preparation of oligonucleotide-peptide conjugates carrying c-myc tag-sequence.
    Gottschling D; Seliger H; Tarrasón G; Piulats J; Eritja R
    Bioconjug Chem; 1998; 9(6):831-7. PubMed ID: 9815178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of proton transport tautomerism in clusters of protonated nucleic acid bases (cytosine, uracil, thymine, and adenine) and ammonia by high-pressure mass spectrometry and ab initio calculations.
    Wu R; McMahon TB
    J Am Chem Soc; 2007 Jan; 129(3):569-80. PubMed ID: 17227020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereoselective formation of a cyclobutane pyrimidine dimer by using N4-acetyl protection of the cytosine base.
    Nishiguchi K; Yamamoto J; Iwai S
    Nucleic Acids Symp Ser (Oxf); 2008; (52):437-8. PubMed ID: 18776441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of hydroxymethylcytosine-containing oligonucleotides and their reactivity upon osmium oxidation.
    Sugizaki K; Ikeda S; Yanagisawa H; Okamoto A
    Org Biomol Chem; 2011 Jun; 9(11):4176-81. PubMed ID: 21499601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transport through 5-substituted pyrimidines in DNA: electron affinities of uracil and cytosine derivatives differently affect the apparent efficiencies.
    Ito T; Kurihara R; Utsumi N; Hamaguchi Y; Tanabe K; Nishimoto S
    Chem Commun (Camb); 2013 Nov; 49(87):10281-3. PubMed ID: 24061333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiosugars. VIII. Preparation of new 4'-thio-L-lyxo pyrimidine nucleoside analogues.
    Wirsching J; Voss J; Adiwidjaja G; Balzarini J; De Clercq E
    Nucleosides Nucleotides Nucleic Acids; 2001 Sep; 20(9):1625-45. PubMed ID: 11580190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of selective deprotection conditions for the synthesis of RNA on a light labile solid support.
    Johnsson RA; Bogojeski JJ; Damha MJ
    Bioorg Med Chem Lett; 2014 May; 24(9):2146-9. PubMed ID: 24698549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the alkaline degradation products of an oligodeoxynucleotide containing 8-oxo-7,8-dihydro-2'-deoxyguanosine by electrospray ionization mass spectrometry.
    Torres MC; Rieger RA; Iden CR
    Chem Res Toxicol; 1996 Dec; 9(8):1313-8. PubMed ID: 8951234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: Electronic UV-Vis transient spectra of the ∙OH reaction products of uracil, thymine, cytosine, and 5,6-dihydrouracil by using the complete active space self-consistent field second-order perturbation (CASPT2//CASSCF) theory.
    Francés-Monerris A; Merchán M; Roca-Sanjuán D
    J Chem Phys; 2013 Aug; 139(7):071101. PubMed ID: 23968062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.