These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9327442)

  • 1. Theory of force transducer design optimization for die wall stress measurement during tablet compaction: optimization and validation of split-web die using finite element analysis.
    Yeh C; Altaf SA; Hoag SW
    Pharm Res; 1997 Sep; 14(9):1161-70. PubMed ID: 9327442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of tablet compaction. II. Finite element analysis of density distributions in convex tablets.
    Sinka IC; Cunningham JC; Zavaliangos A
    J Pharm Sci; 2004 Aug; 93(8):2040-53. PubMed ID: 15236453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Investigation of the Residual Stress Distribution of Flat-Faced and Convexly Curved Tablets Using the Finite Element Method.
    Otoguro S; Hayashi Y; Miura T; Uehara N; Utsumi S; Onuki Y; Obata Y; Takayama K
    Chem Pharm Bull (Tokyo); 2015; 63(11):890-900. PubMed ID: 26279237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time in-die compaction monitoring of dry-coated tablets.
    Liu J; Stephens JD; Kowalczyk BR; Cetinkaya C
    Int J Pharm; 2011 Jul; 414(1-2):171-8. PubMed ID: 21605647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FEM simulation of the die compaction of pharmaceutical products: influence of visco-elastic phenomena and comparison with experiments.
    Diarra H; Mazel V; Busignies V; Tchoreloff P
    Int J Pharm; 2013 Sep; 453(2):389-94. PubMed ID: 23747487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force transducer design: a new approach combining nonlinear finite element analysis and robust design.
    Oggero E; Pagnacco G; Berme N; Kinzel GL; Luscher AF
    Biomed Sci Instrum; 2001; 37():49-54. PubMed ID: 11347440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.
    Podczeck F; Drake KR; Newton JM
    Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the Die-Wall Pressure during the Compression of Biconvex Tablets: Experimental Results and Comparison with FEM Simulation.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    J Pharm Sci; 2015 Dec; 104(12):4339-4344. PubMed ID: 26460539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of strain gauges for radial stress measurement during tableting.
    Huckle PD; Summers MP
    J Pharm Pharmacol; 1985 Oct; 37(10):722-5. PubMed ID: 2867141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method.
    Diarra H; Mazel V; Busignies V; Tchoreloff P
    Int J Pharm; 2015 Sep; 493(1-2):121-8. PubMed ID: 26200746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic study on tablet ejection force and its sensitivity to lubrication for pharmaceutical powders.
    Uzondu B; Leung LY; Mao C; Yang CY
    Int J Pharm; 2018 May; 543(1-2):234-244. PubMed ID: 29621552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature evolution during compaction of pharmaceutical powders.
    Zavaliangos A; Galen S; Cunningham J; Winstead D
    J Pharm Sci; 2008 Aug; 97(8):3291-304. PubMed ID: 17969108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigations into the influence of the position of a breaking line on the tensile failure of flat, round, bevel-edged tablets using finite element methodology (FEM) and its practical relevance for industrial tablet strength testing.
    Podczeck F; Newton JM; Fromme P
    Int J Pharm; 2014 Dec; 477(1-2):306-16. PubMed ID: 25455775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of friction between powder and tooling on the die-wall pressure evolution during tableting: Experimental and numerical results for flat and concave punches.
    Mazel V; Diarra H; Tchoreloff P
    Int J Pharm; 2019 Jan; 554():116-124. PubMed ID: 30395955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the Influence of Granule Size on Simulation Parameters and Residual Shear Stress Distribution in Tablets by Combining the Finite Element Method into the Design of Experiments.
    Hayashi Y; Kosugi A; Miura T; Takayama K; Onuki Y
    Chem Pharm Bull (Tokyo); 2018; 66(5):541-547. PubMed ID: 29710049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benefits of die-wall instrumentation for research and development in tabletting.
    Doelker E; Massuelle D
    Eur J Pharm Biopharm; 2004 Sep; 58(2):427-44. PubMed ID: 15296965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of compression pressure and die-wall pressure on tablet sticking].
    Kakimi K; Niwa T; Danjo K
    Yakugaku Zasshi; 2011 Apr; 131(4):597-601. PubMed ID: 21467800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lamination of biconvex tablets: Numerical and experimental study.
    Mazel V; Diarra H; Malvestio J; Tchoreloff P
    Int J Pharm; 2018 May; 542(1-2):66-71. PubMed ID: 29526618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotary press utilizing a flexible die wall.
    Amidon GE; Smith DP; Hiestand EN
    J Pharm Sci; 1981 Jun; 70(6):613-7. PubMed ID: 7252801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of repeated compaction of tablets on tablet properties and work of compaction using an instrumented laboratory tablet press.
    Gamlen MJ; Martini LG; Al Obaidy KG
    Drug Dev Ind Pharm; 2015 Jan; 41(1):163-9. PubMed ID: 24171692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.