These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 9327544)
1. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Park JI; Grant CM; Attfield PV; Dawes IW Appl Environ Microbiol; 1997 Oct; 63(10):3818-24. PubMed ID: 9327544 [TBL] [Abstract][Full Text] [Related]
2. The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses. Park JI; Grant CM; Dawes IW Biochem Biophys Res Commun; 2005 Feb; 327(1):311-9. PubMed ID: 15629464 [TBL] [Abstract][Full Text] [Related]
3. Rom2p, the Rho1 GTP/GDP exchange factor of Saccharomyces cerevisiae, can mediate stress responses via the Ras-cAMP pathway. Park JI; Collinson EJ; Grant CM; Dawes IW J Biol Chem; 2005 Jan; 280(4):2529-35. PubMed ID: 15545276 [TBL] [Abstract][Full Text] [Related]
4. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985 [TBL] [Abstract][Full Text] [Related]
5. Constitutive glucose-induced activation of the Ras-cAMP pathway and aberrant stationary-phase entry on a glucose-containing medium in the Saccharomyces cerevisiae glucose-repression mutant hex2. Dumortier F; Argüelles JC; Thevelein JM Microbiology (Reading); 1995 Jul; 141 ( Pt 7)():1559-66. PubMed ID: 7551024 [TBL] [Abstract][Full Text] [Related]
6. Role of growth phase and ethanol in freeze-thaw stress resistance of Saccharomyces cerevisiae. Lewis JG; Learmonth RP; Watson K Appl Environ Microbiol; 1993 Apr; 59(4):1065-71. PubMed ID: 8476282 [TBL] [Abstract][Full Text] [Related]
7. Cryopreservation and the Freeze-Thaw Stress Response in Yeast. Cabrera E; Welch LC; Robinson MR; Sturgeon CM; Crow MM; Segarra VA Genes (Basel); 2020 Jul; 11(8):. PubMed ID: 32707778 [TBL] [Abstract][Full Text] [Related]
8. Activation of the Ras/cyclic AMP pathway in the yeast Saccharomyces cerevisiae does not prevent G1 arrest in response to nitrogen starvation. Markwardt DD; Garrett JM; Eberhardy S; Heideman W J Bacteriol; 1995 Dec; 177(23):6761-5. PubMed ID: 7592465 [TBL] [Abstract][Full Text] [Related]
9. Functional coupling of the mammalian EGF receptor to the Ras/cAMP pathway in the yeast Saccharomyces cerevisiae. Busti S; Sacco E; Martegani E; Vanoni M Curr Genet; 2008 Mar; 53(3):153-62. PubMed ID: 18183397 [TBL] [Abstract][Full Text] [Related]
10. Requirement of one functional RAS gene and inability of an oncogenic ras variant to mediate the glucose-induced cyclic AMP signal in the yeast Saccharomyces cerevisiae. Mbonyi K; Beullens M; Detremerie K; Geerts L; Thevelein JM Mol Cell Biol; 1988 Aug; 8(8):3051-7. PubMed ID: 2850478 [TBL] [Abstract][Full Text] [Related]
11. Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Thevelein JM Mol Microbiol; 1991 Jun; 5(6):1301-7. PubMed ID: 1664904 [TBL] [Abstract][Full Text] [Related]
12. Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae. van Aelst L; Jans AW; Thevelein JM J Gen Microbiol; 1991 Feb; 137(2):341-9. PubMed ID: 1849965 [TBL] [Abstract][Full Text] [Related]
13. The glucose-induced CDC25- and RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae. Thevelein JM; Beullens M; Mbonyi K; Van Aelst L Yeast; 1989 Apr; 5 Spec No():S421-5. PubMed ID: 2546336 [No Abstract] [Full Text] [Related]
14. Ste50 adaptor protein influences Ras/cAMP-driven stress-response and cell survival in Saccharomyces cerevisiae. Poplinski A; Hopp C; Ramezani-Rad M Curr Genet; 2007 Apr; 51(4):257-68. PubMed ID: 17318632 [TBL] [Abstract][Full Text] [Related]
15. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given. Tulha J; Lima A; Lucas C; Ferreira C Microb Cell Fact; 2010 Nov; 9():82. PubMed ID: 21047428 [TBL] [Abstract][Full Text] [Related]
16. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. Ando A; Nakamura T; Murata Y; Takagi H; Shima J FEMS Yeast Res; 2007 Mar; 7(2):244-53. PubMed ID: 16989656 [TBL] [Abstract][Full Text] [Related]
17. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Kraakman L; Lemaire K; Ma P; Teunissen AW; Donaton MC; Van Dijck P; Winderickx J; de Winde JH; Thevelein JM Mol Microbiol; 1999 Jun; 32(5):1002-12. PubMed ID: 10361302 [TBL] [Abstract][Full Text] [Related]
18. The glucose repression and RAS-cAMP signal transduction pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis of a reporter protein. Tung KS; Hopper AK Mol Gen Genet; 1995 Apr; 247(1):48-54. PubMed ID: 7715603 [TBL] [Abstract][Full Text] [Related]
19. Alpha-ketoglutarate enhances freeze-thaw tolerance and prevents carbohydrate-induced cell death of the yeast Saccharomyces cerevisiae. Bayliak MM; Hrynkiv OV; Knyhynytska RV; Lushchak VI Arch Microbiol; 2018 Jan; 200(1):33-46. PubMed ID: 28780590 [TBL] [Abstract][Full Text] [Related]
20. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Thevelein JM; de Winde JH Mol Microbiol; 1999 Sep; 33(5):904-18. PubMed ID: 10476026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]