These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 9327550)

  • 1. Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms.
    Moran BN; Hickey WJ
    Appl Environ Microbiol; 1997 Oct; 63(10):3866-71. PubMed ID: 9327550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers.
    Shao Y; Hatzinger PB; Streger SH; Rezes RT; Chu KH
    Biodegradation; 2019 Jun; 30(2-3):173-190. PubMed ID: 30989421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A field evaluation of in situ biodegradation of trichloroethylene through methane injection.
    Eguchi M; Kitagawa M; Suzuki Y; Nakamuara M; Kawai T; Okamura K; Sasaki S; Miyake Y
    Water Res; 2001 Jun; 35(9):2145-52. PubMed ID: 11358293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots.
    Powell CL; Goltz MN; Agrawal A
    J Contam Hydrol; 2014 Dec; 170():68-75. PubMed ID: 25444117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots.
    Powell CL; Nogaro G; Agrawal A
    Biodegradation; 2011 Jun; 22(3):527-38. PubMed ID: 20957410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable carbon and chlorine isotope fractionation in TCE co-metabolic oxidation.
    Gafni A; Gelman F; Ronen Z; Bernstein A
    Chemosphere; 2020 Mar; 242():125130. PubMed ID: 31669996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nitrogen source on growth and trichloroethylene degradation by methane-oxidizing bacteria.
    Chu KH; Alvarez-Cohen L
    Appl Environ Microbiol; 1998 Sep; 64(9):3451-7. PubMed ID: 9726896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of toxic effects of aeration and trichloroethylene oxidation on methanotrophic bacteria grown with different nitrogen sources.
    Chu KH; Alvarez-Cohen L
    Appl Environ Microbiol; 1999 Feb; 65(2):766-72. PubMed ID: 9925614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers.
    Bédard C; Knowles R
    Microbiol Rev; 1989 Mar; 53(1):68-84. PubMed ID: 2496288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of trichloroethylene and cis-1,2-dichloroethylene-contaminated groundwater by methane-utilizing bacteria.
    Arai K; Tsubone T; Takechi T; Inoue T
    J Vet Med Sci; 1999 Jul; 61(7):861-3. PubMed ID: 10458116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer.
    Henry SM; Grbić-Galić D
    Appl Environ Microbiol; 1991 Jan; 57(1):236-44. PubMed ID: 2036010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity.
    Brusseau GA; Tsien HC; Hanson RS; Wackett LP
    Biodegradation; 1990; 1(1):19-29. PubMed ID: 1368139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms.
    Hopkins GD; Semprini L; McCarty PL
    Appl Environ Microbiol; 1993 Jul; 59(7):2277-85. PubMed ID: 8357259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial populations occuring in a trichloroethylene-contaminated aquifer during methane injection.
    Baker P; Futamata H; Harayama S; Watanabe K
    Environ Microbiol; 2001 Mar; 3(3):187-93. PubMed ID: 11321535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates.
    Hatzinger PB; Banerjee R; Rezes R; Streger SH; McClay K; Schaefer CE
    Biodegradation; 2017 Dec; 28(5-6):453-468. PubMed ID: 29022194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood.
    Bankston JL; Sola DL; Komor AT; Dwyer DF
    Water Res; 2002 Mar; 36(6):1539-46. PubMed ID: 11996342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The need for bioaugmentation after thermal treatment of a TCE-contaminated aquifer: Laboratory experiments.
    Friis AK; Albrechtsen HJ; Cox E; Bjerg PL
    J Contam Hydrol; 2006 Dec; 88(3-4):235-48. PubMed ID: 17081651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methanol suppression of trichloroethylene degradation by Methylosinus trichosporium (OB3b) and methane-oxidizing mixed cultures.
    Eng W; Palumbo AV; Sriharan S; Strandberg GW
    Appl Biochem Biotechnol; 1991; 28-29():887-99. PubMed ID: 1929390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural attenuation potential of tricholoroethene in wetland plant roots: role of native ammonium-oxidizing microorganisms.
    Qin K; Struckhoff GC; Agrawal A; Shelley ML; Dong H
    Chemosphere; 2015 Jan; 119():971-977. PubMed ID: 25303656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcosm evaluation of bioaugmentation after field-scale thermal treatment of a TCE-contaminated aquifer.
    Friis AK; Kofoed JL; Heron G; Albrechtsen HJ; Bjerg PL
    Biodegradation; 2007 Dec; 18(6):661-74. PubMed ID: 17225076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.