These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 9327552)
1. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Annous BA; Becker LA; Bayles DO; Labeda DP; Wilkinson BJ Appl Environ Microbiol; 1997 Oct; 63(10):3887-94. PubMed ID: 9327552 [TBL] [Abstract][Full Text] [Related]
2. Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. Zhu K; Bayles DO; Xiong A; Jayaswal RK; Wilkinson BJ Microbiology (Reading); 2005 Feb; 151(Pt 2):615-623. PubMed ID: 15699210 [TBL] [Abstract][Full Text] [Related]
3. Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes. Jones SL; Drouin P; Wilkinson BJ; II Morse PD Arch Microbiol; 2002 Mar; 177(3):217-22. PubMed ID: 11907677 [TBL] [Abstract][Full Text] [Related]
4. Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes. Edgcomb MR; Sirimanne S; Wilkinson BJ; Drouin P; Morse RD Biochim Biophys Acta; 2000 Jan; 1463(1):31-42. PubMed ID: 10631292 [TBL] [Abstract][Full Text] [Related]
5. Exogenous isoleucine and fatty acid shortening ensure the high content of anteiso-C15:0 fatty acid required for low-temperature growth of Listeria monocytogenes. Zhu K; Ding X; Julotok M; Wilkinson BJ Appl Environ Microbiol; 2005 Dec; 71(12):8002-7. PubMed ID: 16332779 [TBL] [Abstract][Full Text] [Related]
6. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures. Seel W; Flegler A; Zunabovic-Pichler M; Lipski A J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29661862 [No Abstract] [Full Text] [Related]
7. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant. Sen S; Sirobhushanam S; Hantak MP; Lawrence P; Brenna JT; Gatto C; Wilkinson BJ Biochim Biophys Acta; 2015 Oct; 1851(10):1406-15. PubMed ID: 26225744 [TBL] [Abstract][Full Text] [Related]
8. FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in Listeria monocytogenes. Singh AK; Zhang YM; Zhu K; Subramanian C; Li Z; Jayaswal RK; Gatto C; Rock CO; Wilkinson BJ FEMS Microbiol Lett; 2009 Dec; 301(2):188-92. PubMed ID: 19863661 [TBL] [Abstract][Full Text] [Related]
10. Different cellular fatty acid pattern behaviours of two strains of Listeria monocytogenes Scott A and CNL 895807 under different temperature and salinity conditions. Chihib NE; Ribeiro da Silva M; Delattre G; Laroche M; Federighi M FEMS Microbiol Lett; 2003 Jan; 218(1):155-60. PubMed ID: 12583912 [TBL] [Abstract][Full Text] [Related]
11. Variation of branched-chain fatty acids marks the normal physiological range for growth in Listeria monocytogenes. Nichols DS; Presser KA; Olley J; Ross T; McMeekin TA Appl Environ Microbiol; 2002 Jun; 68(6):2809-13. PubMed ID: 12039736 [TBL] [Abstract][Full Text] [Related]
12. Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes. Giotis ES; McDowell DA; Blair IS; Wilkinson BJ Appl Environ Microbiol; 2007 Feb; 73(3):997-1001. PubMed ID: 17114323 [TBL] [Abstract][Full Text] [Related]
13. Menaquinone-mediated regulation of membrane fluidity is relevant for fitness of Listeria monocytogenes. Flegler A; Kombeitz V; Lipski A Arch Microbiol; 2021 Aug; 203(6):3353-3360. PubMed ID: 33871675 [TBL] [Abstract][Full Text] [Related]
14. Heat resistance and fatty acid composition of Listeria monocytogenes: effect of pH, acidulant, and growth temperature. Juneja VK; Foglia TA; Marmer BS J Food Prot; 1998 Jun; 61(6):683-7. PubMed ID: 9709249 [TBL] [Abstract][Full Text] [Related]
15. Insights into the Mechanism of Homeoviscous Adaptation to Low Temperature in Branched-Chain Fatty Acid-Containing Bacteria through Modeling FabH Kinetics from the Foodborne Pathogen Listeria monocytogenes. Saunders LP; Sen S; Wilkinson BJ; Gatto C Front Microbiol; 2016; 7():1386. PubMed ID: 27656167 [TBL] [Abstract][Full Text] [Related]
16. Effect of cold temperature on the composition of different lipid classes of the foodborne pathogen Listeria monocytogenes: focus on neutral lipids. Mastronicolis SK; Boura A; Karaliota A; Magiatis P; Arvanitis N; Litos C; Tsakirakis A; Paraskevas P; Moustaka H; Heropoulos G Food Microbiol; 2006 Apr; 23(2):184-94. PubMed ID: 16943003 [TBL] [Abstract][Full Text] [Related]
17. Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10 degrees C and 30 degrees C. Mazzotta AS; Montville TJ J Appl Microbiol; 1997 Jan; 82(1):32-8. PubMed ID: 9113875 [TBL] [Abstract][Full Text] [Related]
18. Modulation of fatty acid composition and growth in Sporosarcina species in response to temperatures and exogenous branched-chain amino acids. Tsuda K; Nagano H; Ando A; Shima J; Ogawa J Appl Microbiol Biotechnol; 2017 Jun; 101(12):5071-5080. PubMed ID: 28331944 [TBL] [Abstract][Full Text] [Related]
19. Influence of fatty acid precursors, including food preservatives, on the growth and fatty acid composition of Listeria monocytogenes at 37 and 10degreesC. Julotok M; Singh AK; Gatto C; Wilkinson BJ Appl Environ Microbiol; 2010 Mar; 76(5):1423-32. PubMed ID: 20048057 [TBL] [Abstract][Full Text] [Related]
20. Role of fatty acids in cold adaptation of Antarctic psychrophilic Flavobacterium spp. Králová S Syst Appl Microbiol; 2017 Sep; 40(6):329-333. PubMed ID: 28711161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]