These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9327604)

  • 1. Time-frequency analysis of the first heart sound. Part 2: An appropriate time-frequency representation technique.
    Chen D; Durand LG; Guo Z; Lee HC
    Med Biol Eng Comput; 1997 Jul; 35(4):311-7. PubMed ID: 9327604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Frequency Representations for second heart sound analysis.
    Reyes BA; Charleston-Villalobos S; Gonzalez-Camarena R; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3616-9. PubMed ID: 19163492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-frequency analysis of the first heart sound. Part 1: Simulation and analysis.
    Chen D; Durand LG; Lee HC
    Med Biol Eng Comput; 1997 Jul; 35(4):306-10. PubMed ID: 9327603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-frequency analysis of heart murmurs. Part II: Optimisation of time-frequency representations and performance evaluation.
    Debiais F; Durand LG; Guo Z; Guardo R
    Med Biol Eng Comput; 1997 Sep; 35(5):480-5. PubMed ID: 9374051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of time-frequency representation techniques for thoracic sounds analysis.
    Reyes BA; Charleston-Villalobos S; González-Camarena R; Aljama-Corrales T
    Comput Methods Programs Biomed; 2014 May; 114(3):276-90. PubMed ID: 24680639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.
    Ergen B; Tatar Y; Gulcur HO
    Comput Methods Biomech Biomed Engin; 2012; 15(4):371-81. PubMed ID: 22414076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-frequency analysis of the first heart sound: Part 3: Application to dogs with varying cardiac contractility and to patients with mitral mechanical prosthetic heart valves.
    Chen D; Durand LG; Lee HC; Wieting DW
    Med Biol Eng Comput; 1997 Sep; 35(5):455-61. PubMed ID: 9374047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of the aortic and pulmonary components of the second heart sound using a nonlinear transient chirp signal model.
    Xu J; Durand LG; Pibarot P
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):277-83. PubMed ID: 11327495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of heart sound signal from noise in joint cycle frequency-time-frequency domains based on fuzzy detection.
    Tang H; Li T; Park Y; Qiu T
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2438-47. PubMed ID: 20542764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of time-frequency representation techniques to measure blood flow turbulence with pulsed-wave Doppler ultrasound.
    Cloutier G; Chen D; Durand LG
    Ultrasound Med Biol; 2001 Apr; 27(4):535-50. PubMed ID: 11368865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Echophonocardiographic studies of the contribution of the atrioventricular valves to the first heart sound.
    Mills PG; Chamusco RF; Moos S; Craige E
    Circulation; 1976 Dec; 54(6):944-51. PubMed ID: 991410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonocardiogram signal analysis: techniques and performance comparison.
    Obaidat MS
    J Med Eng Technol; 1993; 17(6):221-7. PubMed ID: 8169938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of PCG signals using quality assessment and homomorphic filters for localization and classification of heart sounds.
    Mubarak QU; Akram MU; Shaukat A; Hussain F; Khawaja SG; Butt WH
    Comput Methods Programs Biomed; 2018 Oct; 164():143-157. PubMed ID: 30195422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of a parametric model for cardiac sounds.
    Ibarra-Hernández RF; Alonso-Arévalo MA; Cruz-Gutiérrez A; Licona-Chávez AL; Villarreal-Reyes S
    Comput Biol Med; 2017 Oct; 89():170-180. PubMed ID: 28810184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robust method to estimate time split in second heart sound using instantaneous frequency analysis.
    Yildirim I; Ansari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1855-8. PubMed ID: 18002342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-frequency scaling transformation of the phonocardiogram based of the matching pursuit method.
    Zhang X; Durand LG; Senhadji L; Lee HC; Coatrieux JL
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):972-9. PubMed ID: 9691572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Frequency detection of the first heart sound based on wavelet transformation].
    Hu X; Wang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):491-3. PubMed ID: 14565021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-frequency analysis of heart murmurs. Part I: Parametric modelling and numerical simulations.
    Debiais F; Durand LG; Pibarot P; Guardo R
    Med Biol Eng Comput; 1997 Sep; 35(5):474-9. PubMed ID: 9374050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of time-frequency distribution techniques for analysis of simulated Doppler ultrasound signals of the femoral artery.
    Guo Z; Durand LG; Lee HC
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):332-42. PubMed ID: 8063299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelet-based segmentation and feature extraction of heart sounds for intelligent PDA-based phonocardiography.
    Nazeran H
    Methods Inf Med; 2007; 46(2):135-41. PubMed ID: 17347743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.