These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9327614)

  • 1. In vitro 3D reconstruction of long bones using B-scan image processing.
    Migeon B; Marché P
    Med Biol Eng Comput; 1997 Jul; 35(4):369-72. PubMed ID: 9327614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D surface reconstruction of the femur and tibia from parallel 2D contours.
    Lin B; Jin D; Socorro Borges MA
    J Orthop Surg Res; 2022 Mar; 17(1):145. PubMed ID: 35248091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone segmentation applying rigid bone position and triple shadow check method based on RF data.
    Doctor A; Vondenbusch B; Kozak J
    Acta Bioeng Biomech; 2011; 13(2):3-11. PubMed ID: 22097880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial compounding in ultrasonic imaging using an articulated scan arm.
    Hernandez A; Basset O; Chirossel P; Gimenez G
    Ultrasound Med Biol; 1996; 22(2):229-38. PubMed ID: 8735532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic and hierarchical segmentation of the human skeleton in CT images.
    Fu Y; Liu S; Li H; Yang D
    Phys Med Biol; 2017 Apr; 62(7):2812-2833. PubMed ID: 28195561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic registration of pre- and intraoperative data for long bones in minimally invasive surgery.
    Fakhfakh HE; Llort-Pujol G; Hamitouche C; Stindel E
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5575-8. PubMed ID: 25571258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.
    Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L
    Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical note: an R program for automating bone cross section reconstruction.
    Sylvester AD; Garofalo E; Ruff C
    Am J Phys Anthropol; 2010 Aug; 142(4):665-9. PubMed ID: 20607698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone surface reconstruction using localized freehand ultrasound imaging.
    Lopez-Perez L; Lemaitre J; Alfiansyah A; Bellemare ME
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2964-7. PubMed ID: 19163328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-D ultrasound volume reconstruction using the direct frame interpolation method.
    Scheipers U; Koptenko S; Remlinger R; Falco T; Lachaine M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2460-70. PubMed ID: 21041133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CAD method for three-dimensional model of the tibia bone and study of stresses using the finite element method.
    Tarniţă D; Popa D; Tarniţă DN; Grecu D
    Rom J Morphol Embryol; 2006; 47(2):181-6. PubMed ID: 17106528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel interpolation approach for the generation of 3D-geometric digital bone models from image stacks.
    Mittag U; Kriechbaumer A; Rittweger J
    J Musculoskelet Neuronal Interact; 2017 Jun; 17(2):86-96. PubMed ID: 28574415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic bone segmentation technique for CT angiographic studies.
    Fiebich M; Straus CM; Sehgal V; Renger BC; Doi K; Hoffmann KR
    J Comput Assist Tomogr; 1999; 23(1):155-61. PubMed ID: 10050827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of 3D ultrasound images based on Cyclic Regularized Savitzky-Golay filters.
    Toonkum P; Suwanwela NC; Chinrungrueng C
    Ultrasonics; 2011 Feb; 51(2):136-47. PubMed ID: 20696448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for the automatic characterization of bone architecture in 3D mice microtomographic images.
    Martín-Badosa E; Elmoutaouakkil A; Nuzzo S; Amblard D; Vico L; Peyrin F
    Comput Med Imaging Graph; 2003; 27(6):447-58. PubMed ID: 14575778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A-mode ultrasound-based intra-femoral bone cement detection and 3D reconstruction in RTHR.
    Heger S; Mumme T; Sellei R; De La Fuente M; Wirtz DC; Radermacher K
    Comput Aided Surg; 2007 May; 12(3):168-75. PubMed ID: 17538789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automatic reconstruction of personalized 3D volumes of the proximal femur from 2D X-ray images.
    Yu W; Chu C; Tannast M; Zheng G
    Int J Comput Assist Radiol Surg; 2016 Sep; 11(9):1673-85. PubMed ID: 27038965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical Note: Solving the "Chinese postman problem" for effective contour deformation.
    Wang J; Zhang Y; Zhang L; Dong L; Balter PA; Court LE; Yang J
    Med Phys; 2018 Feb; 45(2):767-772. PubMed ID: 29178498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation of the proximal femur in radial MR scans using a random forest classifier and deformable model registration.
    Damopoulos D; Lerch TD; Schmaranzer F; Tannast M; Chênes C; Zheng G; Schmid J
    Int J Comput Assist Radiol Surg; 2019 Mar; 14(3):545-561. PubMed ID: 30604143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic extraction of proximal femur contours from calibrated X-ray images using 3D statistical models: an in vitro study.
    Dong X; Zheng G
    Int J Med Robot; 2009 Jun; 5(2):213-22. PubMed ID: 19343704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.