These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9328986)

  • 41. Wavelength dependence of pulsed laser ablation of calcified tissue.
    Izatt JA; Albagli D; Britton M; Jubas JM; Itzkan I; Feld MS
    Lasers Surg Med; 1991; 11(3):238-49. PubMed ID: 1861563
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser.
    Fried D; Featherstone JD; Le CQ; Fan K
    Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Method to control depth error when ablating human dentin with numerically controlled picosecond laser: a preliminary study.
    Sun Y; Yuan F; Lv P; Wang D; Wang L; Wang Y
    Lasers Med Sci; 2015 Jul; 30(5):1435-41. PubMed ID: 24890033
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of dentin hardness on ablation rate with Er:YAG laser.
    Osuka K; Amagai T; Kukidome N; Takase Y; Aida S; Hirai Y
    Photomed Laser Surg; 2009 Jun; 27(3):395-9. PubMed ID: 19025406
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of the physical modification threshold of dentin induced by neodymium and holmium YAG lasers using scanning electron microscopy.
    White JM; Goodis HE; Marshall GW; Marshall SJ
    Scanning Microsc; 1993 Mar; 7(1):239-45; discussion 245-6. PubMed ID: 8316795
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones.
    Hohenleutner U; Hohenleutner S; Bäumler W; Landthaler M
    Lasers Surg Med; 1997; 20(3):242-7. PubMed ID: 9138252
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Erbium laser ablation of dental hard tissue: effect of water cooling.
    Visuri SR; Walsh JT; Wigdor HA
    Lasers Surg Med; 1996; 18(3):294-300. PubMed ID: 8778525
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Morphological changes of human teeth with Er:YAG laser irradiation.
    Tokonabe H; Kouji R; Watanabe H; Nakamura Y; Matsumoto K
    J Clin Laser Med Surg; 1999 Feb; 17(1):7-12. PubMed ID: 10204442
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm.
    Hu XH; Juhasz T
    Lasers Surg Med; 1996; 18(4):373-80. PubMed ID: 8732576
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A laser-abrasive method for the cutting of enamel and dentin.
    Altshuler GB; Belikov AV; Sinelnik YA
    Lasers Surg Med; 2001; 28(5):435-44. PubMed ID: 11413555
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of enamel and dentin response to Nd:YAG picosecond laser ablation.
    Lizarelli RF; Kurachi C; Misoguti L; Bagnato VS
    J Clin Laser Med Surg; 1999 Jun; 17(3):127-31. PubMed ID: 11199832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ablation depths and morphological changes in human enamel and dentin after Er:YAG laser irradiation with or without water mist.
    Hossain M; Nakamura Y; Yamada Y; Kimura Y; Nakamura G; Matsumoto K
    J Clin Laser Med Surg; 1999 Jun; 17(3):105-9. PubMed ID: 11199828
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wettability of dentin after Yb:KYW thin-disk femtosecond ablation.
    Liu J; Lü P; Sun Y; Wang Y
    Lasers Med Sci; 2015 Aug; 30(6):1689-93. PubMed ID: 25213830
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ablative Potential of Er:YAG Laser in Dentin: Quantum Versus Variable Square Pulse.
    Baraba A; Nathanson D; Matijevic J; Gabric D; Miletic I
    Photomed Laser Surg; 2016 May; 34(5):215-20. PubMed ID: 27057788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Topographical characteristics and shear bond strength of tooth surfaces cut with a laser-powered hydrokinetic system.
    Lin S; Caputo AA; Eversole LR; Rizoiu I
    J Prosthet Dent; 1999 Oct; 82(4):451-5. PubMed ID: 10512965
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Application of mini-TEA-CO2-laser in dentistry. Effect of pulsed low-energy infrared laser beam on dentin].
    Gertich K; Krautschick G; Graehn G
    Dtsch Stomatol (1990); 1991; 41(12):446-50. PubMed ID: 1818622
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of femtosecond laser ablation profile on human teeth.
    Loganathan S; Santhanakrishnan S; Bathe R; Arunachalam M
    Lasers Med Sci; 2019 Jun; 34(4):693-701. PubMed ID: 30280299
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermal alteration and morphological changes of sound and demineralized primary dentin after Er:YAG laser ablation.
    Brandão CB; Contente MM; De Lima FA; Galo R; Corrêa-Afonso AM; Bachmann L; Borsatto MC
    Microsc Res Tech; 2012 Feb; 75(2):126-32. PubMed ID: 21761493
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal collateral damage in porcine corneas after photoablation with free electron laser.
    Bende T; Walker R; Jean B
    J Refract Surg; 1995; 11(2):129-36. PubMed ID: 7634143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate.
    Hibst R; Keller U
    Lasers Surg Med; 1989; 9(4):338-44. PubMed ID: 2761329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.